Today

Finish Euclid.
Bijection/CRT/Isomorphism.
Fermat’s Little Theorem.

39

Finding an inverse?

We showed how to efficiently tell if there is an inverse.
Extend euclid to find inverse.

/39

Euclid’s GCD algorithm.

(define (euclid x vy)
(if (= y 0)
X
(euclid vy (mod x y))))

Computes the ged(x, y) in O(n) divisions. (Remember n=log, x.)

For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

/39

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.
How do we find a multiplicative inverse?

Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers
a, b such that
ax+by=d where d=gcd(x,y).

“Make d out of sum of multiples of x and y.”
What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x, m) = 1.

ax+bm=1
ax=1-bm=1 (mod m).

So a multiplicative inverse of x (mod m)!!
Example: For x =12 and y =35, gcd(12,35) = 1.

(3)12+(~1)35=1.

a=3and b=-1.
The multiplicative inverse of 12 (mod 35) is 3.

Check: 3(12) =36 =1 (mod 35).

Extended GCD Algorithm.

ext—-gcd(x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Claim: Returns (d,a,b): d = gcd(x,y) and d = ax + by.
Example: a— |x/y|-b=1-01{ABOMH2- 1) =3

ext-gcd (35,12)
ext-gcd (12, 11)
ext-gcd (11, 1)
ext-gcd(1,0)

return (1,1,0) ;; 1 = (1)1 + (0) O

return (1,0,1) ;0 1= (0)11 + (1)1
return (1,1,-1) ;0 1= (1)12 + (-1)11
return (1,-1, 3) ;5 1 = (=1)35 +(3)12

6/39

Extended GCD Algorithm.

ext-gcd(x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) =+ Db)

Theorem: Returns (d, a,b), where d = ged(x, y) and

d=ax+by.

Correctness.

Proof: Strong Induction.’

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x+ (0)y.

Induction Step: Returns (d, A, B) with d = Ax + By
Ind hyp: ext-ged(y, mod (x,y)) returns (d, a, b) with
d=ay+b(mod(x,y))

ext-ged(x, y) calls ext-ged(y, mod (x,y)) so
d = ay+b-(mod(x,y))
X
= ay+b(x-1ly)

bx+(a— L;J by

And ext-gcd returns (d, b, (a— Lf,j - b)) so theorem holds!

TAssume d is gcd(x, y) by previous proof.

39

Review Proof: step.

ext—-gcd (x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) =* b)

Recursively: d =ay +b(x — | 5| -y) = d=bx—(a—[}|b)y

Returns (d, b, (a— Lf] -b)).

Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1)
7(1)+60(0)
7(-8)+60(1) =
1)
)

- w A~

7(9) +60(~
7(—=17)+60(2

Confirm: —119+120 =1

10/39

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...
on/2

Inverse of 500,000,357 modulo 1,000,000,000,0007?
< 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.

(1000)° divisions.

11/39

More Number Theory Tools.

Chinese remainder theorem.
Fermat's Theorem.

12/39

Bijections

Bijection is one to one and onto.
Bijection:

f:A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [—1,1].

Not one-to-one. sin () = sin (0) = 0.

Range Definition always is onto.

Consider f(x) = ax mod m.

f:{0,....m—1} —{0,....m—1}.

Domain/Co-Domain: {0,...,m—1}.
When is it a bijection?

When ged(a,m)is7 ... 1.

Not Example: a=2, m=4, f(0) =f(2) =0 (mod 4).

13/39

Lots of Mods

x =25 (mod 7) and x =3 (mod 5).
What is x (mod 35)?

Let's try 5. Not 3 (mod 5)!
Let's try 3. Not 5 (mod 7)!

If x=5 (mod 7)
then x is in {5,12,19,26,33}.

Oh, only 33 is 3 (mod 5).
Hmmm... only one solution.
A bit slow for large values.

14/39

Simple Chinese Remainder Theorem.
My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m, n)=1.
CRT Thm: There is a unique solution x (mod mn).

Proof:
Consider u=n(n~" (mod m)).

u=0 (mod n) u=1 (mod m)
Consider v=m(m~' (mod n)

v=1 (mod n) v=0 (mod m)

Let x = au+ bv.
x=au+bv=a (mod m) : bv=0 (mod m)and au=a (mod m)
x=au+bv=>b (modn) :au=0 (mod n) and bv=b (mod n)

Only solution? If not, two solutions, x and y.
(x—y)=0 (mod m)and (x—y) =0 (mod n).
= (x—y) is multiple of m and n since gcd(m, n)=1.
= x—y>mn = x,y¢{0,...,mn—1}.
Thus, only one solution modulo mn. O

15/39

Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p— 1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

dP (1 (p=1)=(1--(p—1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

a®P =1 modp.

16/39

Fermat and Exponent reducing.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’~'=1 (mod p).

What is 2191 (mod 7)?

Wrong: 2101 = 27+14+3 — 23 (mod 7)

Fermat: 2 is relatively prime to 7. = 26 =1 (mod 7).

Correct: 2101 = 261645 _ 25 _ 32 — 4 (mod 7).

For a prime modulus, we can reduce exponents modulo p—1!

17/39

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Chinese Remainder Theorem: For m, n with gcd(n,m) =1,
= unique x (mod mn) where x =a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (d,b') = (2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isit0 (mod 5)? Yes! Isit2 (mod 9)? Yes!

Isomorphism:
the actions +, x under (mod 5), (mod 9)
correspond to +, x actions in (mod 45)!

18/39

Public Key Cryptography.

1. Public Key Cryptography
2. RSA system
3. Warnings.

19/39

Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
191=0
10=1
01 =1
020=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A@ B® B = A.
Bycases: 1¢1¢1=1....

20/39

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise ma® s.
D(x,s) — bitwise x & s.
Works because m@ s s=m!
...and totally secure!
...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!
Uses up one time pad..or less and less secure.

21/39

Public key crypography.

m= D(E(m,K),k)

Private: k Public: K Message m
(m, K) E(m,K)
Alice @
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is this even possible?

22/39

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1).2

Compute d=e~' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).
Does D(E(m)) = m® = m mod N?

Yes!

2Typically small, say e = 3.
23/39

lterative Extended GCD.
Example: p=7,g=11.

N=T77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

SN N N N N
Il
O S I NN

Confirm: —119+120 =1
d=e'=-17=43= (mod 60)

24/39

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

E(2) =2 =27 =128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.
In general, O(N) or O(2™) multiplications!

25/39

Repeated squaring.

Notice: 43 =32+8+2+1. 5143 =5132+8+2+1 _ 5132 . 518 .512.511
(mod 77).
4 multiplications sort of...
Need to compute 5132...511.?
511 =51 (mod 77)
512 = (51)*(51) = 2601 =60 (mod 77)
514 = (512)%(512) = 6060 = 3600 = 58 (mod 77)
518 = (514) % (514) = 58 +58 = 3364 = 53 (mod 77)
5116 = (518) % (518) = 53+ 53 = 2809 = 37 (mod 77)
5132 = (5116) x(5116) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

5132.518.512.51" = (60) + (53) * (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

26/39

Recursive version.

(define (power x y m)
(if (= y 1)
(mod x m)
(let ((x—to—evened-y (power (square Xx)
(if (evenp vy)
x—-to—-evened-y
(mod (» x x—-to—-evened-y) m)))))

Claim: Program correctly computes x”.
Base: x' = x (mod m).
x¥ = x2/2+ mod(y.2) — (x2)y/2xy mod2 (mod m).

Last expression computed in recursive call with x> and y /2.

Note: y/2 is integer division.

(/ v 2)

m)))

27/39

Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!!!

!
1. x¥: Compute x',x2, x4, ..., x?"" .

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
x* = x32 5 x8x x2x x1.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
Repeated Squaring:
O(n) multiplications.
O(n?) time per multiplication.
— O(n®) time.
Conclusion: x¥ mod N takes O(n®) time.

28/39

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.

O(n®) time.
Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m9 (mod N).
For 512 bits, a few hundred million operations.
Easy, peasey.

29/39

Decoding.

E(m,(N,e)) =me¢ (mod N).
D(m,(N,d)) =m“ (mod N).

N=pgandd=e"' (mod (p—1)(g—1)).
Want: (m®)? = mé9 = m (mod N).

30/39

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®)? = m®¥ =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).

— &P =1 (mod p) = &P+ =2 (mod p)
versus a¥P=1@-D+1 = 2 (mod pq).

Similar, not same, but useful.

31/39

..decoding correctness...

CRT: Isomorphism between (a mod p,b mod q) and x (mod pq)
e=d ' modpq.

x84 — x1+k(p—1)(g-1) (mod pq)

Now x =a mod p and x =b (mod Q).

a' th(p=1)(a-1) = g(aP-D)k(@-1) = 3 (mod p)
By Fermat. &*~' =1 (mod p)

b +kP=1(G=1) = p(b(a=D)kP—1) = b (mod q)
By Fermat. b9~' =1 (mod q)

x® = a (mod p) and x®@ = b (mod q).
CRT — x° = x (mod pq).

32/39

Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: n(N) number of primes less than
N.Forall N > 17

2(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.

All steps are polynomial in O(log N), the number of bits.

33/39

Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.
Breaking in general sense —> factoring algorithm.

34/39

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.
CS161...

35/39

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sy(C).ky)?

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: Ky = (N, e) and ky =d (N=pq.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky) =C?

E(S/(C),Ky) = (Sv(C))¢ =(CY%)®¢ = C% = C (mod N)

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

36/39

RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N = m.
Signature scheme:
E(D(C,k),K)=(C%® modN=C

37/39

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...
and only them?

38/39

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y) =y9 (mod N).
Repeated Squaring = efficiency.

Fermat’s Theorem = correctness.

Good for Encryption and Signature Schemes.

39/39

