
Today

Finish Euclid.

Bijection/CRT/Isomorphism.

Fermat’s Little Theorem.

1 / 39

Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Extend euclid to find inverse.

2 / 39

Euclid’s GCD algorithm.

(define (euclid x y)
(if (= y 0)

x
(euclid y (mod x y))))

Computes the gcd(x ,y) in O(n) divisions. (Remember n = log2 x .)

For x and m, if gcd(x ,m) = 1 then x has an inverse modulo m.

3 / 39

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we find a multiplicative inverse?

4 / 39

Extended GCD
Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x (mod m)!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Check: 3(12) = 36 = 1 (mod 35).

5 / 39

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example: a−bx/yc ·b = 1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)
ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

6 / 39

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(x ,y) and

d = ax +by .

7 / 39

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d ,a,b) with

d = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.
8 / 39

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x−b x
y c ·y) =⇒ d = bx− (a−b x

y cb)y
Returns (d ,b,(a−b x

y c ·b)).

9 / 39

Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

10 / 39

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(1000)5 divisions.

11 / 39

More Number Theory Tools.

Chinese remainder theorem.

Fermat’s Theorem.

12 / 39

Bijections

Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A = B = reals.
Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

13 / 39

Lots of Mods

x = 5 (mod 7) and x = 3 (mod 5).

What is x (mod 35)?

Let’s try 5. Not 3 (mod 5)!
Let’s try 3. Not 5 (mod 7)!

If x = 5 (mod 7)
then x is in {5,12,19,26,33}.

Oh, only 33 is 3 (mod 5).

Hmmm... only one solution.

A bit slow for large values.

14 / 39

Simple Chinese Remainder Theorem.
My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof:
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)

Consider v = m(m−1 (mod n)).
v = 1 (mod n) v = 0 (mod m)

Let x = au+bv .
x = au+bv = a (mod m) : bv = 0 (mod m) and au = a (mod m)
x = au+bv = b (mod n) : au = 0 (mod n) and bv = b (mod n)

Only solution? If not, two solutions, x and y .
(x−y)≡ 0 (mod m) and (x−y)≡ 0 (mod n).

=⇒ (x−y) is multiple of m and n since gcd(m,n)=1.
=⇒ x−y ≥mn =⇒ x ,y 6∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

15 / 39

Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

16 / 39

Fermat and Exponent reducing.

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

What is 2101 (mod 7)?

Wrong: 2101 = 27∗14+3 = 23 (mod 7)

Fermat: 2 is relatively prime to 7. =⇒ 26 = 1 (mod 7).

Correct: 2101 = 26∗16+5 = 25 = 32 = 4 (mod 7).

For a prime modulus, we can reduce exponents modulo p−1!

17 / 39

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Chinese Remainder Theorem: For m,n with gcd(n,m) = 1,
=⇒ unique x (mod mn) where x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions +,× under (mod 5), (mod 9)

correspond to +,× actions in (mod 45)!

18 / 39

Public Key Cryptography.

1. Public Key Cryptography

2. RSA system

3. Warnings.

19 / 39

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

20 / 39

Cryptography ...

BobAlice
Eve

Secret s

Message m
E(m,s)E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

21 / 39

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m
E(m,K)E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

22 / 39

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).2

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

2Typically small, say e = 3.
23 / 39

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

24 / 39

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.
Message: 2!

E(2) = 2e = 27 ≡ 128 (mod 77) = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

25 / 39

Repeated squaring.

Notice: 43 = 32+8+2+1. 5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511

(mod 77).
4 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

26 / 39

Recursive version.

(define (power x y m)
(if (= y 1)
(mod x m)
(let ((x-to-evened-y (power (square x) (/ y 2) m)))
(if (evenp y)

x-to-evened-y
(mod (* x x-to-evened-y) m)))))

Claim: Program correctly computes xy .

Base: x1 = x (mod m).

xy = x2(y/2)+ mod (y ,2) = (x2)y/2xy mod 2 (mod m).

Last expression computed in recursive call with x2 and y/2.

Note: y/2 is integer division.

27 / 39

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2blogyc
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers.
Repeated Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

28 / 39

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

29 / 39

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

30 / 39

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

31 / 39

...decoding correctness...

CRT: Isomorphism between (a mod p,b mod q) and x (mod pq)

e = d−1 mod pq.

xed = x1+k(p−1)(q−1) (mod pq)

Now x = a mod p and x = b (mod q).

a1+k(p−1)(q−1) = a(a(p−1))k(q−1) = a (mod p)
By Fermat. ap−1 = 1 (mod p)

b1+k(p−1)(q−1) = b(b(q−1))k(p−1) = b (mod q)
By Fermat. bq−1 = 1 (mod q)

xed = a (mod p) and xed = b (mod q).

CRT =⇒ xed = x (mod pq).

32 / 39

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

33 / 39

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

34 / 39

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

35 / 39

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

36 / 39

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

37 / 39

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

38 / 39

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

39 / 39

