1. Quickly finish isoperimetric inequality for hypercube.

- 1. Quickly finish isoperimetric inequality for hypercube.
- 2. Modular Arithmetic.

- 1. Quickly finish isoperimetric inequality for hypercube.
- Modular Arithmetic. Clock Math!!!

- 1. Quickly finish isoperimetric inequality for hypercube.
- Modular Arithmetic. Clock Math!!!
- 3. Inverses for Modular Arithmetic: Greatest Common Divisor.

- 1. Quickly finish isoperimetric inequality for hypercube.
- Modular Arithmetic. Clock Math!!!
- Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!

- 1. Quickly finish isoperimetric inequality for hypercube.
- Modular Arithmetic. Clock Math!!!
- Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 4. Euclid's GCD Algorithm.

- 1. Quickly finish isoperimetric inequality for hypercube.
- Modular Arithmetic. Clock Math!!!
- Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- Euclid's GCD Algorithm. A little tricky here!

For 3-space:

For 3-space:

The sphere minimizes surface area to volume.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree: $\Theta(1/|V|)$.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree: $\Theta(1/|V|)$.

Hypercube: $\Theta(1)$.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree: $\Theta(1/|V|)$.

Hypercube: $\Theta(1)$.

Surface Area is roughly at least the volume!

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

Recursive Definition.

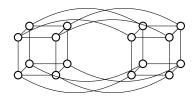
A 0-dimensional hypercube is a node labelled with the empty string of bits.

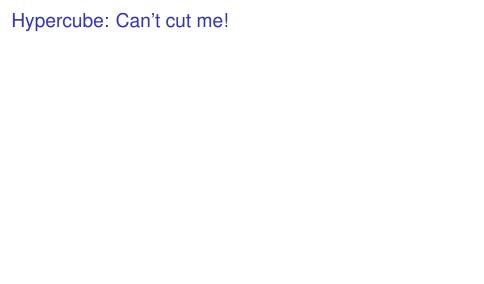
An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x,1x).





Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S;

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

(S, V - S) is cut.

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

(S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges.

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

(S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges.

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

(S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.

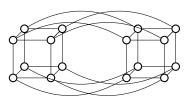
Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

$$(S, V - S)$$
 is cut.

$$(E \cap S \times (V - S))$$
 - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.

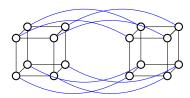


Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

$$(S, V - S)$$
 is cut.
 $(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.



No better than this cut if half-half.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: n = 1

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $\textit{S} = \{0\}$ has one edge leaving.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

Induction Step Idea

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

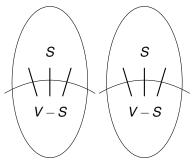
Case 1: Count edges inside subcube inductively.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.



Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

V-S

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

S

V-S

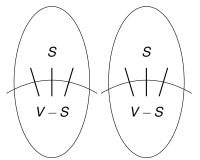
Case 2: Count inside and across.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

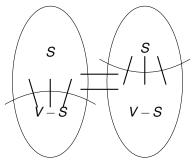
Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.



Case 2: Count inside and across.



Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.Becursive definition:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}$$

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}$$

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}$$

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_X \text{ that connect them.}$$

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_X \text{ that connect them.}$$

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_X \text{ that connect them.}$$

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

Total cut edges $\geq |S_0| + |S_1| = |S|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

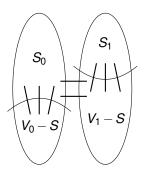
Total cut edges $\geq |S_0| + |S_1| = |S|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

 $|S_0| \ge |V_0|/2.$



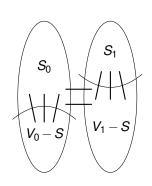
Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

 $|S_0| \ge |V_0|/2$.

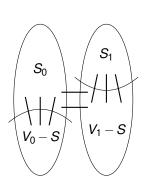
Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.



Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

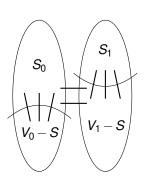


 $|S_0| \ge |V_0|/2$. Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$. $\implies \ge |S_1|$ edges cut in E_1 .

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



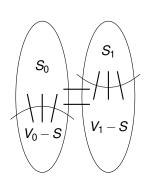
$$|S_0| \ge |V_0|/2.$$

Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2.$
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

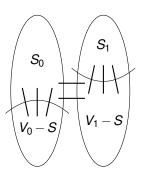


$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\Longrightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



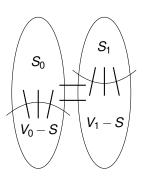
$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\Longrightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes.

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



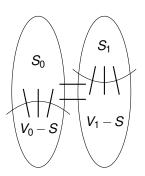
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



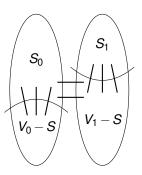
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2.$$
 Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2.$ $\implies \ge |S_1|$ edges cut in E_1 . $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$ $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

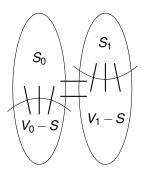
Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

 $\Rightarrow \equiv |S_0| - |S_1|$ edges cut in E_X

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes.

$$\implies = |S_0| - |S_1|$$
 edges cut in E_x .

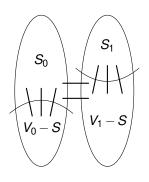
Total edges cut:

 \geq

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Rightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \Rightarrow |V_0 - S| \leq |V_0|/2 \\ &\Rightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes.

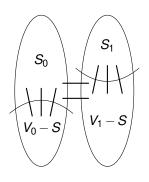
$$\implies = |S_0| - |S_1|$$
 edges cut in E_x .

$$\geq |S_1|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes.

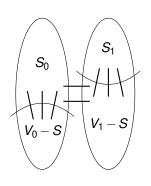
$$\implies = |S_0| - |S_1|$$
 edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes.

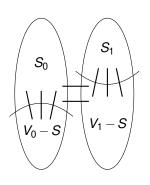
$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

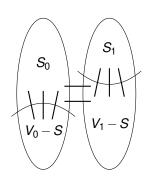
Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2.$$
 Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2.$ $\implies \ge |S_1|$ edges cut in E_1 . $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$

$$\implies \ge |V_0| - |S_0|$$
 edges cut in E_0 .
Edges in E_x connect corresponding nodes.

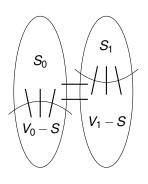
$$\Longrightarrow = |S_0| - |S_1|$$
 edges cut in E_x .

$$\geq \frac{|S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|}{|V_0|}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

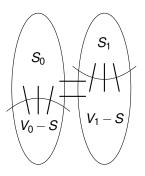
$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| |V_0| = |V|/2 \geq |S|.$$

Induction Step. Case 2.

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

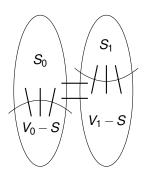
$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| |V_0| = |V|/2 \geq |S|.$$

Induction Step. Case 2.

Thm: For any cut (S, V - S) in the hypercube, the number of cut

edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \Longrightarrow |V_0 - S| \le |V_0|/2$$

$$\implies \ge |V_0| - |S_0|$$
 edges cut in E_0 .

Edges in E_x connect corresponding nodes.

$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$$

 $|V_0| = |V|/2 \geq |S|.$

Also, case 3 where $|S_1| \ge |V|/2$ is symmetric.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

Central object of study.

Next Up.

Modular Arithmetic.

If it is 1:00 now.

If it is 1:00 now.
What time is it in 2 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00. $101 = 12 \times 8 + 5$.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5$.

5 is the same as 101 for a 12 hour clock system.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system.

Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

$$101 = 12 \times 8 + 5$$
.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system.

Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

$$101 = 12 \times 8 + 5$$
.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

$$101 = 12 \times 8 + 5$$
.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12, 1, ..., 11\}$

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

$$101 = 12 \times 8 + 5$$
.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12,1,\ldots,11\}$ (Almost remainder, except for 12 and 0 are equivalent.)

Today is Tuesday.

Today is Tuesday.
What day is it a year from now?

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Today is Tuesday.

What day is it a year from now? on February 12, 2020? Number days.

Today is Tuesday.

What day is it a year from now? on February 12, 2020? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today is Tuesday.

What day is it a year from now? on February 12, 2020? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today is Tuesday.

What day is it a year from now? on February 12, 2020? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, \dots , 6 for Saturday.

Today: day 3.

5 days from now.

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, \dots , 6 for Saturday.

Today: day 3.

5 days from now. day 8

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, \dots , 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now.

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0.

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, \dots , 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 0

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 0 which is Sunday!

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 0 which is Sunday!

What day is it a year from now?

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 0 which is Sunday!

What day is it a year from now?

This year is not a leap year.

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 0 which is Sunday!

What day is it a year from now?

This year is not a leap year. So 365 days from now.

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 0 which is Sunday!

What day is it a year from now?

This year is not a leap year. So 365 days from now.

Day 3+365 or day 368.

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 0 which is Sunday!

What day is it a year from now?

This year is not a leap year. So 365 days from now.

Day 3+365 or day 368.

Smallest representation:

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 0 which is Sunday!

What day is it a year from now?

This year is not a leap year. So 365 days from now.

Day 3+365 or day 368.

Smallest representation:

subtract 7 until smaller than 7.

Today is Tuesday.

What day is it a year from now? on February 12, 2020?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 0 which is Sunday!

What day is it a year from now?

This year is not a leap year. So 365 days from now.

Day 3+365 or day 368.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

Today is Tuesday.

Smallest representation:

368/7

subtract 7 until smaller than 7. divide and get remainder.

```
What day is it a year from now? on February 12, 2020?
   Number days.
    0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 3.
 5 days from now. day 8 or day 1 or Monday.
 25 days from now. day 28 or day 0. 28 = (7)4
   two days are equivalent up to addition/subtraction of multiple of 7.
   11 days from now is day 0 which is Sunday!
What day is it a year from now?
 This year is not a leap year. So 365 days from now.
 Day 3+365 or day 368.
```

Today is Tuesday.

What day is it a year from now? on February 12, 2020?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.
5 days from now. day 8 or day 1 or Monday.
25 days from now. day 28 or day 0. 28 = (7)4
two days are equivalent up to addition/subtraction of multiple of 7.
11 days from now is day 0 which is Sunday!

What day is it a year from now?
This year is not a leap year. So 365 days from now.

Day 3+365 or day 368.
Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.
368/7 leaves quotient of 52 and remainder 4.

Today is Tuesday.

```
What day is it a year from now? on February 12, 2020?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 3.
5 days from now. day 8 or day 1 or Monday.
25 days from now. day 28 or day 0. 28 = (7)4
two days are equivalent up to addition/subtraction of multiple of 7.
11 days from now is day 0 which is Sunday!
```

What day is it a year from now?
This year is not a leap year. So 365 days from now.
Day 3+365 or day 368.
Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.
368/7 leaves quotient of 52 and remainder 4. 365 = 7(52) + 4

Today is Tuesday.

Number days.

```
Today: day 3.
 5 days from now. day 8 or day 1 or Monday.
 25 days from now. day 28 or day 0. 28 = (7)4
   two days are equivalent up to addition/subtraction of multiple of 7.
   11 days from now is day 0 which is Sunday!
What day is it a year from now?
 This year is not a leap year. So 365 days from now.
 Day 3+365 or day 368.
Smallest representation:
 subtract 7 until smaller than 7.
 divide and get remainder.
 368/7 leaves quotient of 52 and remainder 4. 365 = 7(52) + 4
   or February 8, 2018 is a Thursday.
```

What day is it a year from now? on February 12, 2020?

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today is Tuesday.

Number days.

```
Today: day 3.
 5 days from now. day 8 or day 1 or Monday.
 25 days from now. day 28 or day 0. 28 = (7)4
   two days are equivalent up to addition/subtraction of multiple of 7.
   11 days from now is day 0 which is Sunday!
What day is it a year from now?
 This year is not a leap year. So 365 days from now.
 Day 3+365 or day 368.
Smallest representation:
 subtract 7 until smaller than 7.
 divide and get remainder.
 368/7 leaves quotient of 52 and remainder 4. 365 = 7(52) + 4
   or February 8, 2018 is a Thursday.
```

What day is it a year from now? on February 12, 2020?

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

80 years from now?

80 years from now? 20 leap years.

80 years from now? 20 leap years. 366×20 days

80 years from now? 20 leap years. 366×20 days 60 regular years.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 2.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 2. It is day $3+366 \times 20+365 \times 60$.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 2. It is day $3+366 \times 20+365 \times 60$. Equivalent to?

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 2. It is day $3+366 \times 20+365 \times 60$. Equivalent to? Hmm.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 2. It is day $3+366 \times 20+365 \times 60$. Equivalent to? Hmm. What is remainder of 366 when dividing by 7?

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7?

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 2.

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to? Hmm. What is remainder of 366 when dividing by 7? 52 \times 7+2. What is remainder of 365 when dividing by 7? 1 Today is day 2.
```

Get Day: $3 + 2 \times 20 + 1 \times 60$

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to? Hmm. What is remainder of 366 when dividing by 7? 52 \times 7+2. What is remainder of 365 when dividing by 7? 1 Today is day 2.
```

Get Day: $3+2\times 20+1\times 60=103$

Today is day 2.

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to? Hmm. What is remainder of 366 when dividing by 7? 52 \times 7 + 2. What is remainder of 365 when dividing by 7? 1
```

Get Day: $3+2\times20+1\times60=103$ Remainder when dividing by 7?

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to? Hmm. What is remainder of 366 when dividing by 7?\ 52 \times 7+2. What is remainder of 365 when dividing by 7?\ 1 Today is day 2. Get Day: 3+2\times 20+1\times 60=103 Remainder when dividing by 7?\ 102=14\times 7
```

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to? Hmm. What is remainder of 366 when dividing by 7? 52 \times 7 + 2. What is remainder of 365 when dividing by 7? 1
```

Today is day 2. Get Day: $3+2\times 20+1\times 60=103$

Remainder when dividing by 7? $102 = 14 \times 7 + 5$.

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 2.

Get Day: $3+2\times20+1\times60=103$ Remainder when dividing by 7? $102=14\times7+5$. Or February 8, 2099 is Friday!

Further Simplify Calculation:

```
80 years from now? 20 leap years. 366 \times 20 days
 60 regular years. 365 \times 60 days
Today is day 2.
It is day 3+366\times20+365\times60. Equivalent to?
Hmm.
 What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
 What is remainder of 365 when dividing by 7? 1
Today is day 2.
  Get Day: 3+2\times 20+1\times 60=103
  Remainder when dividing by 7? 102 = 14 \times 7 + 5.
  Or February 8, 2099 is Friday!
```

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to? Hmm. What is remainder of 366 when dividing by 7? 52 \times 7+2. What is remainder of 365 when dividing by 7? 1 Today is day 2.
```

Get Day: $3+2\times 20+1\times 60=103$ Remainder when dividing by 7? $102=14\times 7+5$.

Or February 8, 2099 is Friday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 2.

Get Day: $3 + 2 \times 20 + 1 \times 60 = 103$

Remainder when dividing by 7? $102 = 14 \times 7 + 5$.

Or February 8, 2099 is Friday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

```
80 years from now? 20 leap years. 366 \times 20 days
 60 regular years. 365 \times 60 days
Today is day 2.
It is day 3+366\times20+365\times60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 2.

Get Day: $3 + 2 \times 20 + 1 \times 60 = 103$

Remainder when dividing by 7? $102 = 14 \times 7 + 5$.

Or February 8, 2099 is Friday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $3 + 2 \times 6 + 1 \times 4 = 19$.

```
80 years from now? 20 leap years. 366 \times 20 days
 60 regular years. 365 \times 60 days
Today is day 2.
It is day 3+366\times20+365\times60. Equivalent to?
Hmm.
 What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
 What is remainder of 365 when dividing by 7? 1
Today is day 2.
  Get Day: 3+2\times 20+1\times 60=103
  Remainder when dividing by 7? 102 = 14 \times 7 + 5.
  Or February 8, 2099 is Friday!
```

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $3+2\times 6+1\times 4=19$.

Or Day 5.

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 2.

Get Day: $3 + 2 \times 20 + 1 \times 60 = 103$

Remainder when dividing by 7? $102 = 14 \times 7 + 5$.

Or February 8, 2099 is Friday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $3 + 2 \times 6 + 1 \times 4 = 19$.

Or Day 5. February 8, 2099 is Friday.

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 3+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by $7?\ 52 \times 7 + 2$. What is remainder of 365 when dividing by $7?\ 1$ Today is day 2.

Get Day: $3 + 2 \times 20 + 1 \times 60 = 103$

Remainder when dividing by 7? $102 = 14 \times 7 + 5$.

Or February 8, 2099 is Friday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $3 + 2 \times 6 + 1 \times 4 = 19$.

Or Day 5. February 8, 2099 is Friday.

"Reduce" at any time in calculation!

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots, -7, 0, 7, 14, \ldots\}$

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k. Mod 7 equivalence classes:
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k. Mod 7 equivalence classes: \{\dots, -7, 0, 7, 14, \dots\} \{\dots, -6, 1, 8, 15, \dots\}
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k. Mod 7 equivalence classes: \{..., -7, 0, 7, 14, ...\} \{..., -6, 1, 8, 15, ...\} ...
```

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x-y) is divisible by m. ...or x and y have the same remainder w.r.t. m.

...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or " $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ... or x and y have the same remainder w.r.t. m.

...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

```
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}

\implies a + b \equiv c + d \pmod{m} and a \cdot b = c \cdot d \pmod{m}"
```

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ... or x and y have the same remainder w.r.t. m.

...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\}$$
 $\{\ldots, -6, 1, 8, 15, \ldots\}$...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m.

...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\}$$
 $\{\ldots, -6, 1, 8, 15, \ldots\}$...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m.

...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore,

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m.

...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m.

...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x-y) is divisible by m. ...or x and y have the same remainder w.r.t. m.

...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\dots, -7, 0, 7, 14, \dots\} \quad \{\dots, -6, 1, 8, 15, \dots\} \ \dots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

Can calculate with representative in $\{0, ..., m-1\}$.

Notation

 $x \pmod{m}$ or $\mod(x, m)$

Notation

```
x \pmod{m} or \mod(x,m)
- remainder of x divided by m in \{0,\ldots,m-1\}.
```

Notation

```
x \pmod{m} or \mod(x,m)
- remainder of x divided by m in \{0,\ldots,m-1\}.
```

```
x \pmod m \text{ or } \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m
```

```
x \pmod m \text{ or } \mod (x,m) - remainder of x divided by m in \{0,\ldots,m-1\}.  \mod (x,m) = x - \lfloor \frac{x}{m} \rfloor m   \lfloor \frac{x}{m} \rfloor \text{ is quotient.}
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.} \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m)=x-\lfloor\frac{x}{m}\rfloor m \lfloor\frac{x}{m}\rfloor \text{ is quotient.} \mod(29,12)=29-(\lfloor\frac{29}{12}\rfloor)\times 12=29-(2)\times 12
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m)=x-\lfloor\frac{x}{m}\rfloor m \lfloor\frac{x}{m}\rfloor \text{ is quotient.} \mod(29,12)=29-(\lfloor\frac{29}{12}\rfloor)\times 12=29-(2)\times 12=4
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m)=x-\lfloor\frac{x}{m}\rfloor m \lfloor\frac{x}{m}\rfloor \text{ is quotient.} \mod(29,12)=29-(\lfloor\frac{29}{12}\rfloor)\times 12=29-(2)\times 12=\frac{x}{2}=5
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}.  \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m   \lfloor \frac{x}{m} \rfloor \text{ is quotient.}   \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \frac{x}{m} = 5  Work in this system.
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}.  \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m   \lfloor \frac{x}{m} \rfloor \text{ is quotient.}   \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \frac{x}{2} = 5  Work in this system. a \equiv b \pmod{m}.
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}.  \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m   \lfloor \frac{x}{m} \rfloor \text{ is quotient.}   \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \frac{x}{2} = 5  Work in this system. a \equiv b \pmod{m}. Says two integers a and b are equivalent modulo m.
```

```
x \pmod{m} or \pmod{(x,m)}
        - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
```

```
x \pmod{m} or \pmod{(x,m)}
        - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 ≡
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 =
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
  mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
```

```
x \pmod{m} or \pmod{(x,m)}
        - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
Generally, not 6 (mod 7) = 13 (mod 7).
```

```
x \pmod{m} or \pmod{(x,m)}
        - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
Generally, not 6 (mod 7) = 13 (mod 7).
 But probably won't take off points,
```

```
x \pmod{m} or \pmod{(x,m)}
        - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
Generally, not 6 (mod 7) = 13 (mod 7).
 But probably won't take off points, still hard for us to read.
```

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1;

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $2\cdot 4x = 2\cdot 5 \pmod{7}$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

$$2 \cdot 4x = 2 \cdot 5 \pmod{7}$$

$$8x = 10 \pmod{7}$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2:
$$2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$$
.

Can solve
$$4x = 5 \pmod{7}$$
.

$$2 \cdot 4x = 2 \cdot 5 \pmod{7}$$

$$8x = 10 \pmod{7}$$

$$x = 3 \pmod{7}$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod m > 1 \pmod m$.

For 4 modulo 7 inverse is 2:
$$2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$$
.

Can solve
$$4x = 5 \pmod{7}$$
.

$$2 \cdot 4x = 2 \cdot 5 \pmod{7}$$

$$8x = 10 \pmod{7}$$

$$x = 3 \pmod{7}$$

Check!

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2:
$$2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$$
.

Can solve
$$4x = 5 \pmod{7}$$
.

$$2\cdot 4x = 2\cdot 5 \pmod{7}$$

$$8x = 10 \pmod{7}$$

$$x = 3 \pmod{7}$$

Check! $4(3) = 12 = 5 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4"

Inverses and Factors.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

$$x = 3 \pmod{7}$$
 ::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4" \Longrightarrow

 $8k-12\ell$ is a multiple of four for any ℓ and $k \implies$

Inverses and Factors.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

$$x = 3 \pmod{7}$$
 ::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4" \Longrightarrow

 $8k - 12\ell$ is a multiple of four for any ℓ and $k \implies 8k \not\equiv 1 \pmod{12}$ for any k.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

 \implies One must correspond to 1 modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim:

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}, a \neq b$,

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x, m) = 1$$

 \implies Prime factorization of m and x do not contain common primes.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x, m) = 1$$

 \implies Prime factorization of m and x do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \Rightarrow Prime factorization of m and x do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

$$\implies$$
 $(a-b) \ge m$.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \Rightarrow Prime factorization of m and x do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

$$\implies$$
 $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

So (a-b) has to be multiple of m.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$. Contradiction.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of m and x do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

$$\implies$$
 $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$. Contradiction.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • • •

For x = 4 and m = 6. All products of 4...

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For x = 4 and m = 6. All products of 4...

S =

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For
$$x = 4$$
 and $m = 6$. All products of 4... $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For
$$x = 4$$
 and $m = 6$. All products of 4... $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For
$$x=4$$
 and $m=6$. All products of 4... $S=\{0(4),1(4),2(4),3(4),4(4),5(4)\}=\{0,4,8,12,16,20\}$ reducing (mod 6)

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For
$$x=4$$
 and $m=6$. All products of 4... $S=\{0(4),1(4),2(4),3(4),4(4),5(4)\}=\{0,4,8,12,16,20\}$ reducing (mod 6) $S=\{0,4,2,0,4,2\}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For
$$x=4$$
 and $m=6$. All products of 4... $S=\{0(4),1(4),2(4),3(4),4(4),5(4)\}=\{0,4,8,12,16,20\}$ reducing (mod 6) $S=\{0,4,2,0,4,2\}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

```
For x=4 and m=6. All products of 4... S=\{0(4),1(4),2(4),3(4),4(4),5(4)\}=\{0,4,8,12,16,20\} reducing (mod 6) S=\{0,4,2,0,4,2\} Not distinct.
```

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

 $\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Not distinct. Common factor 2.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$\label{eq:S} \mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \\ \text{reducing} \pmod{6}$$

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

 $\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

 $\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$S =$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct,

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1!

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

 $\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

...

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ?

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

 $\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

$$4x = 3 \pmod{6}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

$$4x = 3 \pmod{6}$$
 No solutions.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

٠..

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

$$4x = 3 \pmod{6}$$
 No solutions. Can't get an odd.

$$4x=2 \pmod 6$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

$$4x = 2 \pmod{6}$$
 Two solutions!

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

٠..

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

$$4x = 3 \pmod{6}$$
 No solutions. Can't get an odd.

$$4x = 2 \pmod{6}$$
 Two solutions! $x = 2,5 \pmod{6}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For x = 4 and m = 6. All products of 4...

$$\label{eq:S} \mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5.

$$x = 15 = 3 \pmod{6}$$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

$$4x = 2 \pmod{6}$$
 Two solutions! $x = 2,5 \pmod{6}$

Very different for elements with inverses.

If gcd(x,m) = 1.

If gcd(x,m) = 1. Then the function $f(a) = xa \mod m$ is a bijection.

If gcd(x,m) = 1. Then the function $f(a) = xa \mod m$ is a bijection. One to one: there is a unique pre-image.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4. $f(1) = 3(1) = 3 \pmod{4},$

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4},$$

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$$

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

 $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$ Oh yeah.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

 $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$ Oh yeah. f(0) = 0.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

 $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$
 Oh yeah. $f(0) = 0.$

Bijection

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

 $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$ Oh yeah. f(0) = 0.

Bijection \equiv unique pre-image and same size.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

 $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$ Oh yeah. f(0) = 0.

Bijection \equiv unique pre-image and same size.

All the images are distinct. \implies unique pre-image for any image.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$$
 Oh yeah. $f(0) = 0$.

Bijection \equiv unique pre-image and same size.

All the images are distinct. \implies unique pre-image for any image.

$$x = 2, m = 4.$$

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$$
 Oh yeah. $f(0) = 0$.

Bijection \equiv unique pre-image and same size.

All the images are distinct. \implies unique pre-image for any image.

$$x = 2, m = 4.$$

 $f(1) = 2, f(2) = 0, f(3) = 2$

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$$
 Oh yeah. $f(0) = 0$.

Bijection \equiv unique pre-image and same size.

All the images are distinct. \implies unique pre-image for any image.

$$x = 2, m = 4.$$

$$f(1) = 2, f(2) = 0, f(3) = 2$$

Oh yeah.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$$
 Oh yeah. $f(0) = 0$.

Bijection \equiv unique pre-image and same size.

All the images are distinct. \implies unique pre-image for any image.

$$x = 2, m = 4.$$

$$f(1) = 2, f(2) = 0, f(3) = 2$$

Oh yeah. f(0) = 0.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$$
 Oh yeah. $f(0) = 0$.

Bijection \equiv unique pre-image and same size.

All the images are distinct. \implies unique pre-image for any image.

$$x = 2, m = 4.$$

 $f(1) = 2, f(2) = 0, f(3) = 2$
Oh yeah. $f(0) = 0$.

Not a bijection.

How to find the inverse?

How to find the inverse?

How to find if x has an inverse modulo m?

How to find the inverse? How to find if x has an inverse modulo m? Find gcd (x, m).

How to find the inverse? How to find if x has an inverse modulo m? Find gcd (x, m). Greater than 1?

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1?

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd(x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm:

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Very slow.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Very slow.

Next up.

Next up.

Next up.

Euclid's Algorithm.

Next up.

Euclid's Algorithm.

Runtime.

Next up.

Euclid's Algorithm.

Runtime.

Euclid's Extended Algorithm.

Does 2 have an inverse mod 8?

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. $3 = \gcd(6,9)!$

x has an inverse modulo m if and only if

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. $3 = \gcd(6,9)!$

x has an inverse modulo m if and only if gcd(x, m) > 1?

Does 2 have an inverse mod 8? No.

Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

$$2(5) = 10 = 1 \mod 9.$$

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$.

$$3 = gcd(6,9)!$$

x has an inverse modulo m if and only if

$$gcd(x, m) > 1$$
? No.

$$gcd(x,m)=1$$
?

Does 2 have an inverse mod 8? No.

Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

$$2(5) = 10 = 1 \mod 9.$$

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$.

$$3 = gcd(6,9)!$$

x has an inverse modulo m if and only if

$$gcd(x, m) > 1$$
? No.

$$gcd(x, m) = 1$$
? Yes.

Does 2 have an inverse mod 8? No.

Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

$$2(5) = 10 = 1 \mod 9.$$

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$.

$$3 = gcd(6,9)!$$

x has an inverse modulo m if and only if

$$gcd(x, m) > 1$$
? No.

$$gcd(x, m) = 1$$
? Yes.

Now what?:

Does 2 have an inverse mod 8? No.

Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

$$2(5) = 10 = 1 \mod 9.$$

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$.

$$3 = gcd(6,9)!$$

x has an inverse modulo m if and only if

$$gcd(x, m) > 1$$
? No.

$$gcd(x, m) = 1$$
? Yes.

Now what?:

Compute gcd!

Does 2 have an inverse mod 8? No.

Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

$$2(5) = 10 = 1 \mod 9.$$

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$.

$$3 = gcd(6,9)!$$

x has an inverse modulo m if and only if

$$gcd(x, m) > 1$$
? No.

$$gcd(x, m) = 1$$
? Yes.

Now what?:

Compute gcd!

Compute Inverse modulo *m*.

Does 2 have an inverse mod 8? No.

Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

$$2(5) = 10 = 1 \mod 9.$$

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$.

$$3 = gcd(6,9)!$$

x has an inverse modulo m if and only if

$$gcd(x, m) > 1$$
? No.

$$gcd(x, m) = 1$$
? Yes.

Now what?:

Compute gcd!

Compute Inverse modulo *m*.

Notation: d|x means "d divides x" or

Notation: d|x means "d divides x" or x = kd for some integer k.

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact?

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes?

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or $x = \ell d$ and y = kd

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or $x = \ell d$ and y = kd

$$\implies x - y = kd - \ell d$$

Notation: $d \mid x$ means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or $x = \ell d$ and y = kd

$$\implies x - y = kd - \ell d = (k - \ell)d$$

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or $x = \ell d$ and y = kd $\Rightarrow x - y = kd - \ell d = (k - \ell)d \Rightarrow d|(x - y)$

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or $x = \ell d$ and y = kd

$$\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$$

Notation: d|x means "d divides x" or

x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or

 $x = \ell d$ and y = kd

$$\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$$

Notice x - y is smaller than x and y, and has same common divisors!

Notation: d|x means "d divides x" or

x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or $x = \ell d$ and y = kd

$$\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$$

Notice x - y is smaller than x and y, and has same common divisors! Think induction or recursion!

Notation: d|x means "d divides x" or

Notation: d|x means "d divides x" or x = kd for some integer k.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d| \mod (x,y)$.

Proof:

 $mod(x,y) = x - \lfloor x/y \rfloor \cdot y$

```
Notation: d|x means "d divides x" or x = kd for some integer k.
```

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

```
mod(x,y) = x - \lfloor x/y \rfloor \cdot y
= x - \lfloor s \rfloor \cdot y for integer s
```

```
Notation: d|x means "d divides x" or x = kd for some integer k.
```

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

```
Notation: d|x means "d divides x" or x = kd for some integer k.
```

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

```
Notation: d|x means "d divides x" or x = kd for some integer k.
```

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

Therefore $d \mid \mod(x, y)$.

```
Notation: d|x means "d divides x" or x = kd for some integer k.
```

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

```
Notation: d|x means "d divides x" or x = kd for some integer k.
```

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

```
Notation: d|x means "d divides x" or x = kd for some integer k.
```

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d|\mod(x,y)$ then d|y and d|x. **Proof...:** Similar.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home. □ish.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

□ish.

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d|\mod(x,y)$ then d|y and d|x. **Proof...:** Similar. Try this at home.

Troding difficility trib at nome.

GCD Mod Corollary: $gcd(x,y) = gcd(y, \mod(x,y)).$

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

□ish.

GCD Mod Corollary: gcd(x,y) = gcd(y, mod(x,y)). **Proof:** x and y have **same** set of common divisors as x and mod(x,y) by Lemma 1 and 2.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

□ish.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Proof: x and y have **same** set of common divisors as x and mod (x,y) by Lemma 1 and 2.

Same common divisors \implies largest is the same.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

□ish.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Proof: x and y have **same** set of common divisors as x and mod (x,y) by Lemma 1 and 2.

Same common divisors \implies largest is the same.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)?

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)?

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's $\gcd(7,0)$? 7 since 7 divides 7 and 7 divides 0 What's $\gcd(x,0)$? x

```
(define (euclid x y)
  (if (= y 0)
    x
        (euclid y (mod x y)))) ***
```

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
    x
    (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
    x
        (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's $\gcd(7,0)$? 7 since 7 divides 7 and 7 divides 0 What's $\gcd(x,0)$? x

```
(define (euclid x y)
  (if (= y 0)
    x
    (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction.

Base Case: y = 0, "x divides y and x"

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
    x
    (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction.

Base Case: y = 0, "x divides y and x"

 \implies "x is common divisor and clearly largest."

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
    x
    (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction.

Base Case: y = 0, "x divides y and x"

 \implies "x is common divisor and clearly largest."

Induction Step: $mod(x, y) < y \le x \text{ when } x \ge y$

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
    x
    (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction.

Base Case: y = 0, "x divides y and x"

 \implies "x is common divisor and clearly largest."

Induction Step: $mod(x,y) < y \le x \text{ when } x \ge y$

call in line (***) meets conditions plus arguments "smaller"

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
    x
    (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction.

Base Case: y = 0, "x divides y and x"

 \implies "x is common divisor and clearly largest."

Induction Step: $mod(x, y) < y \le x \text{ when } x \ge y$

call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
     x
     (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction.

Base Case: y = 0, "x divides y and x"

 \implies "x is common divisor and clearly largest."

Induction Step: $mod(x,y) < y \le x \text{ when } x \ge y$

call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis computes gcd(y, mod(x,y))

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
```

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
    x
    (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction.

Base Case: y = 0, "x divides y and x"

 \implies "x is common divisor and clearly largest."

Induction Step: $mod(x,y) < y \le x \text{ when } x \ge y$

call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis computes gcd(y, mod(x,y)) which is gcd(x,y) by GCD Mod Corollary.

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x v)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x \ge y.
Proof: Use Strong Induction.
Base Case: y = 0, "x divides y and x"
            \implies "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y < x \text{ when } x > y
call in line (***) meets conditions plus arguments "smaller"
  and by strong induction hypothesis
  computes gcd(y, mod(x, y))
which is gcd(x, y) by GCD Mod Corollary.
```

Before discussing running time of gcd procedure...

Before discussing running time of gcd procedure... How big is 1000000?

Before discussing running time of gcd procedure... How big is 1000000? For a computer scientist:

Before discussing running time of gcd procedure... How big is 1000000? For a computer scientist: 7

Before discussing running time of gcd procedure... How big is 1000000? For a computer scientist: 7 or 20.

Before discussing running time of gcd procedure... How big is 1000000? For a computer scientist: 7 or 20. What is the value of 1,000,000?

Before discussing running time of gcd procedure...
How big is 1000000? For a computer scientist: 7 or 20.
What is the value of 1,000,000?
one million or 1,000,000!

Before discussing running time of gcd procedure...
How big is 1000000? For a computer scientist: 7 or 20.
What is the value of 1,000,000?
one million or 1,000,000!
What is the "size" of 1,000,000?

Before discussing running time of gcd procedure...

How big is 1000000? For a computer scientist: 7 or 20.

What is the value of 1,000,000?

one million or 1,000,000!

What is the "size" of 1,000,000?

Number of digits in base 10: 7.

Before discussing running time of gcd procedure...

How big is 1000000? For a computer scientist: 7 or 20.

What is the value of 1,000,000?

one million or 1,000,000!

What is the "size" of 1,000,000?

Number of digits in base 10: 7.

Number of bits (a digit in base 2): 21.

Before discussing running time of gcd procedure...

How big is 1000000? For a computer scientist: 7 or 20.

What is the value of 1,000,000?

one million or 1,000,000!

What is the "size" of 1,000,000?

Number of digits in base 10: 7.

Number of bits (a digit in base 2): 21.

For a number *x*, what is its size in bits?

Before discussing running time of gcd procedure...

How big is 1000000? For a computer scientist: 7 or 20.

What is the value of 1,000,000?

one million or 1,000,000!

What is the "size" of 1,000,000?

Number of digits in base 10: 7.

Number of bits (a digit in base 2): 21.

For a number *x*, what is its size in bits?

$$n = b(x) \approx \log_2 x$$

Before discussing running time of gcd procedure...

How big is 1000000? For a computer scientist: 7 or 20.

What is the value of 1,000,000?

one million or 1,000,000!

What is the "size" of 1,000,000?

Number of digits in base 10: 7.

Number of bits (a digit in base 2): 21.

For a number *x*, what is its size in bits?

$$n = b(x) \approx \log_2 x$$

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$.

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good?

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots y/2\}$?

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots y/2\}$? Check 2,

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$? Check 2, check 3,

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$? Check 2, check 3, check 4,

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$? Check 2, check 3, check 4, check 5 . . . , check y/2.

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$? Check 2, check 3, check 4, check 5 . . . , check y/2.

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots y/2\}$? Check 2, check 3, check 4, check $5 \dots$, check y/2. If $y \approx x$

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots y/2\}$? Check 2, check 3, check 4, check $5 \dots$, check y/2. If $y \approx x$ roughly y uses n bits

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$.

Is this good? Better than trying all numbers in $\{2, \dots y/2\}$?

Check 2, check 3, check 4, check $5 \dots$, check y/2.

If $y \approx x$ roughly y uses n bits ...

 2^{n-1} divisions! Exponential dependence on size!

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$.

Is this good? Better than trying all numbers in $\{2, \dots y/2\}$?

Check 2, check 3, check 4, check $5 \dots$, check y/2.

If $y \approx x$ roughly y uses n bits ...

 2^{n-1} divisions! Exponential dependence on size!

101 bit number.

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$.

Is this good? Better than trying all numbers in $\{2, \dots y/2\}$?

Check 2, check 3, check 4, check $5 \dots$, check y/2.

If $y \approx x$ roughly y uses n bits ...

 2^{n-1} divisions! Exponential dependence on size!

101 bit number. $2^{100} \approx 10^{30} =$ "million, trillion, trillion" divisions!

```
Theorem: (euclid x y) uses 2n "divisions" where n = b(x) \approx \log_2 x. Is this good? Better than trying all numbers in \{2, \dots y/2\}? Check 2, check 3, check 4, check 5 ..., check y/2. If y \approx x roughly y uses n bits ... 2^{n-1} divisions! Exponential dependence on size! 101 bit number. 2^{100} \approx 10^{30} = "million, trillion, trillion" divisions! 2n is much faster!
```

```
Theorem: (euclid x y) uses 2n "divisions" where n = b(x) \approx \log_2 x. Is this good? Better than trying all numbers in \{2, \dots, y/2\}? Check 2, check 3, check 4, check 5 ..., check y/2. If y \approx x roughly y uses n bits ... 2^{n-1} divisions! Exponential dependence on size! 101 bit number. 2^{100} \approx 10^{30} = "million, trillion, trillion" divisions! 2n is much faster! ... roughly 200 divisions.
```

Trying everything

Trying everything Check 2, check 3, check 4, check $5 \dots$, check y/2.

Trying everything Check 2, check 3, check 4, check 5 ..., check y/2. "(gcd x y)" at work.

Trying everything Check 2, check 3, check 4, check 5 ..., check y/2. "(gcd x y)" at work.

euclid(700,568)

Trying everything Check 2, check 3, check 4, check 5 \dots , check y/2. "(gcd x y)" at work.

```
euclid(700,568)
euclid(568, 132)
```

Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
```

Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
```

Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
```

```
Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.
```

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(4, 0)
```

```
Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.
```

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(4, 0)
```

Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(4, 0)
```

Notice: The first argument decreases rapidly.

Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(4, 0)
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.

Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(4, 0)
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.

(The second is less than the first.)

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number. One more recursive call to finish.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number. One more recursive call to finish. 1 division per recursive call.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number. One more recursive call to finish.

1 division per recursive call.

O(n) divisions.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \Rightarrow$ true in one recursive call;

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \Rightarrow$ true in one recursive call;

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$." mod(x,y) is second argument in next recursive call,

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \Rightarrow$ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x, y) \le x/2$."

mod(x, y) is second argument in next recursive call, and becomes the first argument in the next one.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

```
Case 1: y < x/2, first argument is y \implies true in one recursive call;
```

Case 2: Will show "
$$y \ge x/2$$
" \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

$$\lfloor \frac{x}{v} \rfloor = 1$$
,

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

```
Case 1: y < x/2, first argument is y \implies true in one recursive call;
```

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

$$\lfloor \frac{x}{y} \rfloor = 1,$$

 $mod(x, y) = x - y \lfloor \frac{x}{y} \rfloor =$

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

```
Case 1: y < x/2, first argument is y \implies true in one recursive call;
```

Case 2: Will show "
$$y \ge x/2$$
" \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

$$\lfloor \frac{x}{y} \rfloor = 1,$$

 $\text{mod}(x, y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \le x - x/2$

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

```
Case 1: y < x/2, first argument is y \implies true in one recursive call;
```

Case 2: Will show "
$$y \ge x/2$$
" \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

$$\lfloor \frac{x}{y} \rfloor = 1,$$

 $\text{mod}(x, y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \le x - x/2 = x/2$

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

```
Case 1: y < x/2, first argument is y \implies true in one recursive call;
Case 2: Will show "y > x/2" \implies "mod(x, y) < x/2."
```

mod(x,y) is second argument in next recursive call,

and becomes the first argument in the next one.

$$\lfloor \frac{x}{y} \rfloor = 1,$$

 $\text{mod}(x, y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \le x - x/2 = x/2$

Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Extend euclid to find inverse.

Euclid's GCD algorithm.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Euclid's GCD algorithm.

```
(define (euclid x y)
  (if (= y 0)
          x
          (euclid y (mod x y))))
```

Computes the gcd(x, y) in O(n) divisions.

Euclid's GCD algorithm.

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Computes the gcd(x, y) in O(n) divisions.

For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

GCD algorithm used to tell if there is a multiplicative inverse.

GCD algorithm used to tell **if** there is a multiplicative inverse.

How do we find a multiplicative inverse?

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where ax + by

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make *d* out of sum of multiples of *x* and *y*."

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make d out of sum of multiples of x and y."

What is multiplicative inverse of x modulo m?

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make d out of sum of multiples of x and y."

What is multiplicative inverse of *x* modulo *m*?

By extended GCD theorem, when gcd(x, m) = 1.

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make d out of sum of multiples of x and y."

What is multiplicative inverse of *x* modulo *m*?

By extended GCD theorem, when gcd(x, m) = 1.

$$ax + bm = 1$$

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make d out of sum of multiples of x and y."

What is multiplicative inverse of *x* modulo *m*?

By extended GCD theorem, when gcd(x, m) = 1.

$$ax + bm = 1$$

 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make *d* out of sum of multiples of *x* and *y*."

What is multiplicative inverse of *x* modulo *m*?

By extended GCD theorem, when gcd(x, m) = 1.

$$ax + bm = 1$$

 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

So a multiplicative inverse of $x \pmod{m}$!!

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make d out of sum of multiples of x and y."

What is multiplicative inverse of *x* modulo *m*?

By extended GCD theorem, when gcd(x, m) = 1.

$$ax + bm = 1$$

 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

So a multiplicative inverse of $x \pmod{m}$!! Example: For x = 12 and y = 35, gcd(12,35) = 1.

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make d out of sum of multiples of x and y."

What is multiplicative inverse of *x* modulo *m*?

By extended GCD theorem, when gcd(x, m) = 1.

$$ax + bm = 1$$

 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

So a multiplicative inverse of $x \pmod{m}$!!

Example: For x = 12 and y = 35, gcd(12,35) = 1.

$$(3)12+(-1)35=1.$$

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make *d* out of sum of multiples of *x* and *y*."

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x, m) = 1.

$$ax + bm = 1$$

 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

So a multiplicative inverse of $x \pmod{m}$!!

Example: For x = 12 and y = 35, gcd(12,35) = 1.

$$(3)12 + (-1)35 = 1.$$

$$a = 3$$
 and $b = -1$.

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make d out of sum of multiples of x and y."

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x, m) = 1.

$$ax + bm = 1$$

 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

So a multiplicative inverse of $x \pmod{m}$!!

Example: For x = 12 and y = 35, gcd(12,35) = 1.

$$(3)12 + (-1)35 = 1.$$

$$a = 3$$
 and $b = -1$.

The multiplicative inverse of 12 (mod 35) is 3.

gcd(35,12)

```
gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
```

```
gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
```

```
gcd(35,12)

gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)

gcd(1,0)
```

```
gcd(35,12)

gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)

gcd(1,0)

1
```

How did gcd get 11 from 35 and 12?

 $35 - \left| \frac{35}{12} \right| 12 = 35 - (2)12 = 11$

```
gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)
1

How did gcd get 11 from 35 and 12?
```

 $35 - \left| \frac{35}{12} \right| 12 = 35 - (2)12 = 11$

How does gcd get 1 from 12 and 11?

```
gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)
1

How did gcd get 11 from 35 and 12?
```

```
\gcd(35,12) \gcd(12,\ 11) \quad ;; \quad \gcd(12,\ 35\%12) \gcd(11,\ 1) \quad ;; \quad \gcd(11,\ 12\%11) \gcd(1,0) \quad 1 How did gcd get 11 from 35 and 12? 35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11 How does gcd get 1 from 12 and 11? 12 - \left\lfloor \frac{12}{11} \right\rfloor 11 = 12 - (1)11 = 1
```

```
gcd(35, 12)
        gcd(12, 11) ;; gcd(12, 35%12)
           gcd(11, 1) ;; gcd(11, 12%11)
              gcd(1,0)
How did gcd get 11 from 35 and 12?
35 - \left| \frac{35}{12} \right| 12 = 35 - (2)12 = 11
How does gcd get 1 from 12 and 11?
   12 - \left| \frac{12}{11} \right| 11 = 12 - (1)11 = 1
Algorithm finally returns 1.
```

```
acd (35, 12)
        gcd(12, 11) ;; gcd(12, 35%12)
           gcd(11, 1) ;; gcd(11, 12%11)
              acd(1,0)
How did gcd get 11 from 35 and 12?
35 - \left| \frac{35}{12} \right| 12 = 35 - (2)12 = 11
How does gcd get 1 from 12 and 11?
   12 - \left| \frac{12}{11} \right| 11 = 12 - (1)11 = 1
Algorithm finally returns 1.
```

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

```
acd (35, 12)
        gcd(12, 11) ;; gcd(12, 35%12)
           gcd(11, 1) ;; gcd(11, 12%11)
              acd(1,0)
How did gcd get 11 from 35 and 12?
35 - \left| \frac{35}{12} \right| 12 = 35 - (2)12 = 11
How does gcd get 1 from 12 and 11?
   12 - \left| \frac{12}{11} \right| 11 = 12 - (1)11 = 1
Algorithm finally returns 1.
But we want 1 from sum of multiples of 35 and 12?
```

```
acd (35, 12)
        gcd(12, 11) ;; gcd(12, 35%12)
           gcd(11, 1) ;; gcd(11, 12%11)
              acd(1,0)
How did gcd get 11 from 35 and 12?
35 - \left| \frac{35}{12} \right| 12 = 35 - (2)12 = 11
How does gcd get 1 from 12 and 11?
   12 - \left| \frac{12}{11} \right| 11 = 12 - (1)11 = 1
Algorithm finally returns 1.
But we want 1 from sum of multiples of 35 and 12?
```

Get 1 from 12 and 11.

$$1 = 12 - (1)11$$

```
acd (35, 12)
        gcd(12, 11) ;; gcd(12, 35%12)
           gcd(11, 1) ;; gcd(11, 12%11)
              acd(1,0)
How did gcd get 11 from 35 and 12?
35 - \frac{35}{12} \cdot 12 = 35 - (2) \cdot 12 = 11
How does gcd get 1 from 12 and 11?
   12 - \left| \frac{12}{11} \right| 11 = 12 - (1)11 = 1
Algorithm finally returns 1.
But we want 1 from sum of multiples of 35 and 12?
Get 1 from 12 and 11.
  1 = 12 - (1)11 = 12 - (1)(35 - (2)12)
Get 11 from 35 and 12 and plugin....
```

```
acd (35, 12)
        gcd(12, 11) ;; gcd(12, 35%12)
           gcd(11, 1) ;; gcd(11, 12%11)
              gcd(1,0)
How did gcd get 11 from 35 and 12?
35 - \frac{35}{12} \cdot 12 = 35 - (2) \cdot 12 = 11
How does gcd get 1 from 12 and 11?
   12 - \left| \frac{12}{11} \right| 11 = 12 - (1)11 = 1
Algorithm finally returns 1.
But we want 1 from sum of multiples of 35 and 12?
Get 1 from 12 and 11.
  1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35
Get 11 from 35 and 12 and plugin.... Simplify.
```

```
acd (35, 12)
        gcd(12, 11) ;; gcd(12, 35%12)
           gcd(11, 1) ;; gcd(11, 12%11)
              gcd(1,0)
How did gcd get 11 from 35 and 12?
35 - \frac{35}{12} \cdot 12 = 35 - (2) \cdot 12 = 11
How does gcd get 1 from 12 and 11?
   12 - \left| \frac{12}{11} \right| 11 = 12 - (1)11 = 1
Algorithm finally returns 1.
But we want 1 from sum of multiples of 35 and 12?
Get 1 from 12 and 11.
  1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35
Get 11 from 35 and 12 and plugin.... Simplify.
```

```
\gcd(35,12) \gcd(12,\ 11) \quad ;; \quad \gcd(12,\ 35\%12) \gcd(11,\ 1) \quad ;; \quad \gcd(11,\ 12\%11) \gcd(1,0) \quad \quad 1 How did gcd get 11 from 35 and 12? 35 - \lfloor \frac{35}{12} \rfloor 12 = 35 - (2)12 = 11 How does gcd get 1 from 12 and 11?
```

 $12 - \left\lfloor \frac{12}{11} \right\rfloor 11 = 12 - (1)11 = 1$

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

$$1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35$$

Get 11 from 35 and 12 and plugin.... Simplify. $a = 3$ and $b = -1$.

```
ext-gcd(x,y)

if y = 0 then return(x, 1, 0)

else

(d, a, b) := ext-gcd(y, mod(x,y))

return (d, b, a - floor(x/y) * b)
```

```
ext-gcd(x,y)

if y = 0 then return(x, 1, 0)

else

(d, a, b) := ext-gcd(y, mod(x,y))

return (d, b, a - floor(x/y) * b)
```

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x,y))
        return (d, b, a - floor(x/y) * b)
```

```
ext-gcd(35,12)
```

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x,y))
        return (d, b, a - floor(x/y) * b)
```

```
ext-gcd(35,12)
ext-gcd(12, 11)
```

```
 \begin{array}{l} \text{ext-gcd}(x,y) \\ \text{if } y = 0 \text{ then return}(x, 1, 0) \\ \text{else} \\ (d, a, b) := \text{ext-gcd}(y, \text{mod}(x,y)) \\ \text{return} (d, b, a - \text{floor}(x/y) * b) \end{array}
```

```
ext-gcd(35,12)
ext-gcd(12, 11)
ext-gcd(11, 1)
```

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x,y))
        return (d, b, a - floor(x/y) * b)
```

```
ext-gcd(35,12)

ext-gcd(12, 11)

ext-gcd(11, 1)

ext-gcd(1,0)
```

```
ext-gcd(x, y)
  if y = 0 then return (x, 1, 0)
     else
          (d, a, b) := ext-gcd(y, mod(x,y))
          return (d, b, a - floor(x/y) * b)
Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by.
Example: a - |x/y| \cdot b =
    ext-qcd(35,12)
      ext-qcd(12, 11)
         ext-qcd(11, 1)
           ext-qcd(1,0)
           return (1,1,0);; 1 = (1)1 + (0)0
```

```
ext-gcd(x, y)
  if y = 0 then return (x, 1, 0)
     else
          (d, a, b) := ext-gcd(y, mod(x,y))
          return (d, b, a - floor(x/y) * b)
Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by.
Example: a - |x/y| \cdot b = 1 - |11/1| \cdot 0 = 1
    ext-qcd(35,12)
      ext-qcd(12, 11)
         ext-qcd(11, 1)
           ext-qcd(1,0)
           return (1,1,0);; 1 = (1)1 + (0)0
         return (1,0,1) ;; 1 = (0)11 + (1)1
```

```
ext-gcd(x, y)
  if y = 0 then return (x, 1, 0)
     else
          (d, a, b) := ext-gcd(y, mod(x,y))
          return (d, b, a - floor(x/y) * b)
Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by.
Example: a - |x/y| \cdot b = 0 - |12/11| \cdot 1 = -1
    ext-qcd(35,12)
      ext-qcd(12, 11)
        ext-qcd(11, 1)
          ext-qcd(1,0)
           return (1,1,0);; 1 = (1)1 + (0)0
        return (1,0,1) ;; 1 = (0)11 + (1)1
      return (1,1,-1) ;; 1 = (1)12 + (-1)11
```

```
ext-gcd(x, y)
  if y = 0 then return (x, 1, 0)
     else
          (d, a, b) := ext-gcd(y, mod(x,y))
         return (d, b, a - floor(x/y) * b)
Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by.
Example: a - |x/y| \cdot b = 1 - |35/12| \cdot (-1) = 3
    ext-qcd(35,12)
      ext-qcd(12, 11)
        ext-qcd(11, 1)
          ext-qcd(1,0)
          return (1,1,0);; 1 = (1)1 + (0)0
        return (1,0,1) ;; 1 = (0)11 + (1)1
      return (1,1,-1) ;; 1 = (1)12 + (-1)11
   return (1,-1, 3) ;; 1 = (-1)35 + (3)12
```

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x,y))
        return (d, b, a - floor(x/y) * b)
```

```
ext-gcd(35,12)
  ext-gcd(12, 11)
    ext-gcd(11, 1)
    ext-gcd(1,0)
    return (1,1,0) ;; 1 = (1)1 + (0) 0
    return (1,0,1) ;; 1 = (0)11 + (1)1
    return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 + (3)12
```

```
ext-gcd(x,y)

if y = 0 then return(x, 1, 0)

else

(d, a, b) := ext-gcd(y, mod(x,y))

return (d, b, a - floor(x/y) * b)
```

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x,y))
        return (d, b, a - floor(x/y) * b)
```

Theorem: Returns (d, a, b), where d = gcd(a, b) and

$$d = ax + by$$
.

Proof: Strong Induction.¹

¹Assume *d* is gcd(x, y) by previous proof.

Proof: Strong Induction.¹

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.

¹Assume *d* is gcd(x,y) by previous proof.

Proof: Strong Induction.¹

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.

Induction Step: Returns (d, A, B) with d = Ax + By Ind hyp: **ext-gcd** $(y, \mod(x, y))$ returns (d, a, b) with

 $d = ay + b(\mod(x,y))$

¹Assume *d* is gcd(x, y) by previous proof.

Proof: Strong Induction.¹

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.

Induction Step: Returns (d, A, B) with d = Ax + By Ind hyp: **ext-gcd** $(y, \mod (x, y))$ returns (d, a, b) with

 $d = ay + b(\mod(x,y))$

ext-gcd(x, y) calls ext-gcd(y, mod(x, y)) so

¹Assume *d* is gcd(x, y) by previous proof.

Proof: Strong Induction.¹

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.

Induction Step: Returns (d, A, B) with d = Ax + By Ind hyp: **ext-gcd** $(y, \mod(x, y))$ returns (d, a, b) with

 $d = ay + b(\mod(x,y))$

ext-gcd(x,y) calls ext-gcd(y, mod(x,y)) so

 $d = ay + b \cdot (\mod(x, y))$

¹Assume *d* is gcd(x, y) by previous proof.

Proof: Strong Induction.¹

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.

Induction Step: Returns (d, A, B) with d = Ax + By Ind hyp: **ext-gcd** $(y, \mod (x, y))$ returns (d, a, b) with

 $d = ay + b(\mod(x,y))$

ext-gcd(x,y) calls ext-gcd(y, mod(x,y)) so

$$d = ay + b \cdot (\mod(x, y))$$

= $ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$

¹Assume *d* is gcd(x, y) by previous proof.

Proof: Strong Induction.¹

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.

Induction Step: Returns (d, A, B) with d = Ax + By Ind hyp: **ext-gcd** $(y, \mod (x, y))$ returns (d, a, b) with

 $d = ay + b(\mod(x,y))$

ext-gcd(x,y) calls ext-gcd(y, mod(x,y)) so

$$d = ay + b \cdot (\mod(x, y))$$

$$= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$$

$$= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$$

¹Assume *d* is gcd(x, y) by previous proof.

Proof: Strong Induction.¹

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.

Induction Step: Returns (d, A, B) with d = Ax + By Ind hyp: **ext-gcd** $(y, \mod(x, y))$ returns (d, a, b) with

 $d = ay + b(\mod(x,y))$

ext-gcd(x,y) calls ext-gcd(y, mod(x,y)) so

$$d = ay + b \cdot (\mod(x, y))$$

$$= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$$

$$= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$$

And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{v} \rfloor \cdot b))$ so theorem holds!

¹Assume *d* is gcd(x, y) by previous proof.

Proof: Strong Induction.¹

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.

Induction Step: Returns (d, A, B) with d = Ax + ByInd hyp: **ext-gcd** $(y, \mod (x, y))$ returns (d, a, b) with $d = av + b(\mod (x, y))$

ext-gcd(x,y) calls ext-gcd(y, mod(x,y)) so

$$d = ay + b \cdot (\mod(x, y))$$

$$= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$$

$$= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$$

And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{v} \rfloor \cdot b))$ so theorem holds!

¹Assume *d* is gcd(x, y) by previous proof.

Prove: returns (d, A, B) where d = Ax + By.

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x,y))
        return (d, b, a - floor(x/y) * b)
```

Prove: returns (d, A, B) where d = Ax + By.

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x,y))
        return (d, b, a - floor(x/y) * b)
```

Recursively: $d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y)$

Prove: returns (d, A, B) where d = Ax + By.

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x,y))
        return (d, b, a - floor(x/y) * b)
```

Recursively: $d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y$

Returns $(d, b, (a - \lfloor \frac{x}{v} \rfloor \cdot b))$.

Prove: returns (d, A, B) where d = Ax + By.

```
ext-gcd(x,y)

if y = 0 then return(x, 1, 0)

else

(d, a, b) := ext-gcd(y, mod(x,y))

return (d, b, a - floor(x/y) * b)

Recursively: d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y
```

Example: gcd(7,60) = 1.

```
Example: gcd(7,60) = 1. egcd(7,60).
```

Example: gcd(7,60) = 1. egcd(7,60).

$$7(0) + 60(1) = 60$$

```
Example: gcd(7,60) = 1. egcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$

```
Example: gcd(7,60) = 1. egcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$

```
Example: gcd(7,60) = 1. egcd(7,60).
```

```
7(0)+60(1) = 60

7(1)+60(0) = 7

7(-8)+60(1) = 4

7(9)+60(-1) = 3
```

```
Example: gcd(7,60) = 1. egcd(7,60).
```

```
7(0)+60(1) = 60

7(1)+60(0) = 7

7(-8)+60(1) = 4

7(9)+60(-1) = 3

7(-17)+60(2) = 1
```

```
Example: gcd(7,60) = 1. egcd(7,60).
```

```
7(0)+60(1) = 60

7(1)+60(0) = 7

7(-8)+60(1) = 4

7(9)+60(-1) = 3

7(-17)+60(2) = 1
```

```
Example: gcd(7,60) = 1. egcd(7,60).
```

```
7(0)+60(1) = 60

7(1)+60(0) = 7

7(-8)+60(1) = 4

7(9)+60(-1) = 3

7(-17)+60(2) = 1
```

Confirm:

```
Example: gcd(7,60) = 1. egcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$
 $7(9)+60(-1) = 3$
 $7(-17)+60(2) = 1$

Confirm: -119 + 120 = 1

Conclusion: Can find multiplicative inverses in O(n) time!

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Very different from elementary school: try 1, try 2, try 3...

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Very different from elementary school: try 1, try 2, try 3... $2^{n/2}$

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Very different from elementary school: try 1, try 2, try 3... $2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000?

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Very different from elementary school: try 1, try 2, try 3... $2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80 divisions.

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Very different from elementary school: try 1, try 2, try 3... $2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80 divisions. versus 1,000,000

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Very different from elementary school: try 1, try 2, try 3... $2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80 divisions. versus 1,000,000

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Very different from elementary school: try 1, try 2, try 3... $2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80 divisions. versus 1,000,000

Internet Security.

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Very different from elementary school: try 1, try 2, try 3... $2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80 divisions. versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Very different from elementary school: try 1, try 2, try 3... $2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80 divisions. versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.

```
Conclusion: Can find multiplicative inverses in O(n) time!
 Proof: d|x and d|y \implies d|(x-y).
Very different from elementary school: try 1, try 2, try 3...
 2^{n/2}
Inverse of 500,000,357 modulo 1,000,000,000,000?
  < 80 divisions.
  versus 1,000,000
Internet Security.
Public Key Cryptography: 512 digits.
 512 divisions vs.
```

```
Conclusion: Can find multiplicative inverses in O(n) time!
 Proof: d|x and d|y \implies d|(x-y).
Very different from elementary school: try 1, try 2, try 3...
 2^{n/2}
Inverse of 500,000,357 modulo 1,000,000,000,000?
  < 80 divisions.
  versus 1,000,000
Internet Security.
Public Key Cryptography: 512 digits.
 512 divisions vs.
 Internet Security:
```

```
Conclusion: Can find multiplicative inverses in O(n) time!
 Proof: d|x and d|y \implies d|(x-y).
Very different from elementary school: try 1, try 2, try 3...
 2^{n/2}
Inverse of 500,000,357 modulo 1,000,000,000,000?
  < 80 divisions.
  versus 1,000,000
Internet Security.
Public Key Cryptography: 512 digits.
 512 divisions vs.
 Internet Security: Thursday.
```