Lecture 7. Outline.

- 1. Quickly finish isoperimetric inequality for hypercube.
- 2. Modular Arithmetic. Clock Math!!!
- 3. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 4. Euclid's GCD Algorithm. A little tricky here!

Isoperimetry.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree: $\Theta(1/|V|)$.

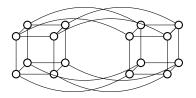
Hypercube: $\Theta(1)$.

Surface Area is roughly at least the volume!

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x(1x) with the additional edges (0x, 1x).

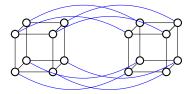


Hypercube: Can't cut me!

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology: (S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.



No better than this cut if half-half.

Proof of Large Cuts.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:**

Base Case: n = 1 V= {0,1}. S = {0} has one edge leaving. $|S| = \phi$ has 0.

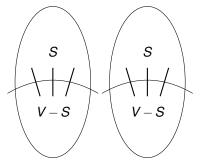
Induction Step Idea

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

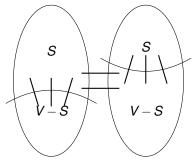
Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.



Case 2: Count inside and across.



Induction Step

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$, edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

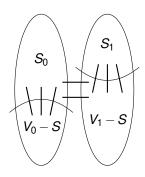
 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both S_0 and S_1 are small sides. So by induction. Edges cut in $H_0 \ge |S_0|$. Edges cut in $H_1 \ge |S_1|$.

Total cut edges $\geq |S_0| + |S_1| = |S|$.

Induction Step. Case 2.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof: Induction Step. Case 2.**



$$\begin{split} |S_0| \geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| \leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ \implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| \geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ \implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| \\ |V_0| = |V|/2 \geq |S|.$ Also, case 3 where $|S_1| \geq |V|/2$ is symmetric.

Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

Central object of study.

Next Up.

Modular Arithmetic.

Clock Math

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12, 1, ..., 11\}$ (Almost remainder, except for 12 and 0 are equivalent.)

Day of the week.

Today is Tuesday. What day is it a year from now? on February 12, 2020? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.

5 days from now. day 8 or day 1 or Monday.

25 days from now. day 28 or day 0. 28 = (7)4

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 0 which is Sunday!

What day is it a year from now?

This year is not a leap year. So 365 days from now.

Day 3+365 or day 368.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

368/7 leaves quotient of 52 and remainder 4. 365 = 7(52) + 4 or February 8, 2018 is a Thursday.

Years and years...

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 2. It is day $3 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 2.

Get Day: $3 + 2 \times 20 + 1 \times 60 = 103$

Remainder when dividing by 7? $102 = 14 \times 7 + 5$.

Or February 8, 2099 is Friday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $3 + 2 \times 6 + 1 \times 4 = 19$.

Or Day 5. February 8, 2099 is Friday.

"Reduce" at any time in calculation!

Modular Arithmetic: refresher.

x is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

Can calculate with representative in $\{0, \ldots, m-1\}$.

Notation

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$

Work in this system.

 $a \equiv b \pmod{m}$.

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$.

 $6 = 3 + 3 = 3 + 10 \pmod{7}$.

Generally, not 6 $(mod 7) = 13 \pmod{7}$.

But probably won't take off points, still hard for us to read.

Inverses and Factors.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

```
Can solve 4x = 5 \pmod{7}.

x = 3 \pmod{7}:5 Check 74(3) = 12 = 5 (mod 7).

For 8 Hortulo 129.96 Aultiplicative inverse!

x = 3 \pmod{7}.

Check 94 (39 ± 10 2 ± 5) (mod 7).

8k - 12\ell is a multiple of four for any \ell and k \implies

8k \neq 1 \pmod{12} for any k.
```

Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : **Claim:** The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to different one of m equivalence classes modulo m.

 \implies One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ..., m-1\}$. Contradiction.

Proof review. Consequence.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...

 $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

 $\textit{S} = \{0, 4, 2, 0, 4, 2\}$

...

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

 $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5. x = $15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd. $4x = 2 \pmod{6}$ Two solutions $|x - 2|5 \pmod{6}$

 $4x = 2 \pmod{6}$ Two solutions! $x = 2,5 \pmod{6}$

Very different for elements with inverses.

Proof Review 2: Bijections.

If gcd(x,m) = 1. Then the function $f(a) = xa \mod m$ is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4. $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{4}.$ Oh yeah. f(0) = 0.

Bijection \equiv unique pre-image and same size.

All the images are distinct. \implies unique pre-image for any image.

$$x = 2, m = 4.$$

 $f(1) = 2, f(2) = 0, f(3) = 2$
Oh yeah. $f(0) = 0.$

Not a bijection.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m). Greater than 1? No multiplicative inverse. Equal to 1? Multiplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m. Very slow.

Inverses

Next up.

Euclid's Algorithm. Runtime. Euclid's Extended Algorithm.

Refresh

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$. Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$. Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if gcd(x,m) > 1? No. gcd(x,m) = 1? Yes.

Now what?:

Compute gcd!

Compute Inverse modulo m.

Divisibility...

Notation: d|x means "*d* divides *x*" or x = kd for some integer *k*.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or $x = \ell d$ and y = kd

 $\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$

Notice x - y is smaller than x and y, and has same common divisors! Think induction or recursion!

More divisibility

Notation: d|x means "*d* divides *x*" or x = kd for some integer *k*.

Lemma 1: If d|x and d|y then d|y and $d| \mod (x, y)$.

Proof:

Therefore $d \mod (x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x, y)$ then d|y and d|x. **Proof...:** Similar. Try this at home.

GCD Mod Corollary: gcd(x,y) = gcd(y, mod(x,y)). **Proof:** *x* and *y* have **same** set of common divisors as *x* and mod (x,y) by Lemma 1 and 2. Same common divisors \implies largest is the same. □ish.

Euclid's algorithm.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction. **Base Case:** y = 0, "*x* divides *y* and *x*" \implies "*x* is common divisor and clearly largest." **Induction Step:** mod $(x, y) < y \le x$ when $x \ge y$ call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis computes gcd(*y*, mod (*x*,*y*)) which is gcd(*x*,*y*) by GCD Mod Corollary.

Number Value and Representation Size.

Before discussing running time of gcd procedure... How big is 1000000? For a computer scientist: 7 or 20. What is the value of 1,000,000? one million or 1.000.000! What is the "size" of 1,000,000? Number of digits in base 10: 7. Number of bits (a digit in base 2): 21. For a number x, what is its size in bits?

$$n = b(x) \approx \log_2 x$$

Theorem: (euclid x y) uses 2*n* "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots y/2\}$? Check 2, check 3, check 4, check 5 ..., check y/2. If $y \approx x$ roughly *y* uses *n* bits ... 2^{n-1} divisions! Exponential dependence on size! 101 bit number. $2^{100} \approx 10^{30} =$ "million, trillion, trillion" divisions! 2*n* is much faster! .. roughly 200 divisions.

Algorithms at work.

```
Trying everything
Check 2, check 3, check 4, check 5 ..., check y/2.
"(gcd x y)" at work.
```

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(12, 4)
euclid(4, 0)
4
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Runtime Proof.

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After $2\log_2 x = O(n)$ recursive calls, argument *x* is 1 bit number. One more recursive call to finish. 1 division per recursive call. O(n) divisions.

Runtime Proof (continued.)

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \implies "mod $(x, y) \le x/2$."

mod (x, y) is second argument in next recursive call, and becomes the first argument in the next one. When $y \ge x/2$, then

 $\lfloor \frac{x}{y} \rfloor = 1,$ mod $(x, y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \leq x - x/2 = x/2$

Finding an inverse?

We showed how to efficiently tell if there is an inverse. Extend euclid to find inverse.

Euclid's GCD algorithm.

Computes the gcd(x, y) in O(n) divisions.

For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell **if** there is a multiplicative inverse. How do we **find** a multiplicative inverse?

Extended GCD

Euclid's Extended GCD Theorem:

For any *x*, *y* there are integers *a*, *b* where

ax + by = d where d = gcd(x, y).

"Make *d* out of sum of multiples of *x* and *y*."

What is multiplicative inverse of *x* modulo *m*? By extended GCD theorem, when gcd(x,m) = 1.

ax + bm = 1 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

So *a* multiplicative inverse of $x \pmod{m}$!! Example: For x = 12 and y = 35, gcd(12,35) = 1.

```
(3)12 + (-1)35 = 1.
```

a = 3 and b = -1.

The multiplicative inverse of 12 (mod 35) is 3.

Make *d* out of *x* and *y*..?

```
gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)
1
```

```
How did gcd get 11 from 35 and 12? 35 - \lfloor \frac{35}{12} \rfloor 12 = 35 - (2)12 = 11
```

How does gcd get 1 from 12 and 11? $12 - \lfloor \frac{12}{11} \rfloor 11 = 12 - (1)11 = 1$

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b = -1.

Extended GCD Algorithm.

```
Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by.
Example: a - \lfloor x/y \rfloor \cdot b = 011 + \lfloor 120 + (-11) \rfloor = 3
```

```
ext-gcd(35,12)
ext-gcd(12, 11)
ext-gcd(11, 1)
ext-gcd(11, 0)
return (1,1,0) ;; 1 = (1)1 + (0) 0
return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 + (3)12
```

Extended GCD Algorithm.

Theorem: Returns (d, a, b), where d = gcd(a, b) and

$$d = ax + by$$
.

Correctness.

Proof: Strong Induction.¹ **Base:** ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y. **Induction Step:** Returns (d, A, B) with d = Ax + ByInd hyp: **ext-gcd**(y, mod (x,y)) returns (d, a, b) with d = ay + b(mod (x, y))

ext-gcd(x, y) calls ext-gcd(y, mod(x, y)) so

$$d = ay + b \cdot (\mod (x, y))$$

= $ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$
= $bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$

And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$ so theorem holds!

¹Assume *d* is gcd(x, y) by previous proof.

Review Proof: step.

```
Prove: returns (d, A, B) where d = Ax + By.
```

Recursively: $d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y$ Returns $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$. Hand Calculation Method for Inverses.

 $\begin{array}{l} \mbox{Example: } gcd(7,60) = 1. \\ gcd(7,60). \end{array}$

$$7(0)+60(1) = 60$$

$$7(1)+60(0) = 7$$

$$7(-8)+60(1) = 4$$

$$7(9)+60(-1) = 3$$

$$7(-17)+60(2) = 1$$

Confirm: -119 + 120 = 1

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time! Proof: d|x and $d|y \implies d|(x-y)$.

Very different from elementary school: try 1, try 2, try 3...

2^{n/2}

Inverse of 500,000,357 modulo 1,000,000,000,000?

 \leq 80 divisions. versus 1,000,000

Internet Security: Thursday.