CS70:Proofs Today!!!	Propositional Logic Identities.	Review puzzle
Woohoo!!	$\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$ $\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$ $\neg (P \land Q) \equiv \neg P \lor \neg Q$ $\neg (P \land Q) \equiv \neg P \lor \neg Q$ $P \implies Q \equiv \neg P \implies \neg Q \text{ contrapositive.}$ $P \implies Q \equiv \neg P \lor Q$ $P \implies Q$	Theory: If you drink alcohol you must be at least 18. Which cards do you turn over? Write implication and contraposition: $Drink \implies " \ge 18"$ "< 18" \implies Don't Drink. Its easier now. At least for me.
CS70: Lecture 2. Outline.	Quick Background and Notation.	Direct Proof.
Today: Proofs!!! 1. By Example. 2. Direct. (Prove $P \implies Q$.) 3. by Contraposition (Prove $P \implies Q$) 4. by Contradiction (Prove <i>P</i> .) 5. by Cases If time: discuss induction.	Integers closed under addition. $a, b \in Z \implies a+b \in Z$ a b means "a divides b". 2 4? Yes! Since for $q = 2, 4 = (2)2$. 7 23? No! No q where true. 4 2? No! Formally: $a b \iff \exists q \in Z$ where $b = aq$. 3 15 since for $q = 5, 15 = 3(5)$. A natural number $p > 1$, is prime if it is divisible only by 1 and itself.	Theorem: For any $a, b, c \in Z$, if $a b$ and $a c$ then $a (b-c)$. Proof: Assume $a b$ and $a c$ $b = aq$ and $c = aq'$ where $q, q' \in Z$ b-c = aq - aq' = a(q-q') Done? (b-c) = a(q-q') and $(q-q')$ is an integer so a (b-c) Works for $\forall a, b, c$? Argument applies to <i>every</i> $a, b, c \in Z$. Direct Proof Form: Goal: $P \Longrightarrow Q$ Assume P . Therefore Q.

Another direct proof. Let D_3 be the 3 digit natural numbers. Thm: For $n \in D_3$, if alternating sum of digits of *n* divisible by 11, then 11|*n*. $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$ Examples: n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121. n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)**Proof:** For $n \in D_3$, n = 100a + 10b + c, for some a, b, c. Assume: Alt. sum: a - b + c = 11k for some integer k. Add 99a + 11b to both sides. 100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)Left hand side is n, k+9a+b is integer. $\implies 11|n$. Direct proof of $P \implies Q$: Assumed P: 11|a-b+c. Proved Q: 11|n.

Proof by Contraposition

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 what do we know about d? What to do? Is it even true? Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do? Goal: Prove $P \implies Q$. Remember: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. **Proof:** Assume $\neg Q$: d is even. d = 2k. d|n so we have n = qd = q(2k) = 2(kq)n is even. $\neg P$

The Converse

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|nIs converse a theorem? $\forall n \in D_3$, (11|n) \implies (11|alt. sum of digits of n) Yes? No?

Another Contraposition...

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. $(P \implies Q)$ n^2 is even, $n^2 = 2k$, ... $\sqrt{2k}$ even? **Proof by contraposition:** $(P \implies Q) \equiv (\neg Q \implies \neg P)$ $P = 'n^2$ is even.' and $\neg P = 'n^2$ is odd' Q = 'n is even.' and $\neg Q = 'n$ is odd' **Prove** $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. $n^2 = 2l + 1$ where *l* is a natural number.. ... and n^2 is odd! $\neg Q \implies \neg P$ so $P \implies Q$ and ...

Another Direct Proof.

```
Theorem: \forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \implies

99a + 11b + (a - b + c) = 11k \implies

a - b + c = 11k - 99a - 11b \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11\ell where \ell = (k - 9a - b) \in Z

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.
```

Theorem: $\forall n \in N'$, (11 alt. sum of digits of n) \iff (11 |n)

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational. Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$. A simple property (equality) should always "not" hold. Proof by contradiction: **Theorem:** *P*. $\neg P \implies P_1 \dots \implies R$ $\neg P \implies Q_1 \dots \implies \neg R$ $\neg P \implies R \land \neg R \equiv$ False or $\neg P \implies False$ Contrapositive of $\neg P \implies False$ is *True* $\implies P$. Theorem *P* is proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational. Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$. Reduced form: *a* and *b* have no common factors.

 $\sqrt{2}b = a$

 $2b^2 = a^2 = 4k^2$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$b^2 = 2k^2$

 b^2 is even $\implies b$ is even. *a* and *b* have a common factor. Contradiction.

Proof by cases.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0$$

Multiply by b⁵,

 $a^5-ab^4+b^5=0$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible. Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows. $\hfill \Box$

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- ► Assume finitely many primes: *p*₁,...,*p*_k.
- Consider number

 $q = (p_1 \times p_2 \times \cdots p_k) + 1.$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $\Rightarrow p|q-x \implies p \le q-x=1.$
- ▶ so $p \le 1$. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Proof by cases.

Theorem: There exist irrational *x* and *y* such that x^y is rational. Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$. $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} + \sqrt{2}} = \sqrt{2}^2 = 2$.

Thus, we have irrational x and y with a rational x^{y} (i.e., 2). One of the cases is true so theorem holds. Question: Which case holds? Don't know!!!

Product of first k primes..

Did we prove?

- "The product of the first *k* primes plus 1 is prime."
- No.
- > The chain of reasoning started with a false statement.

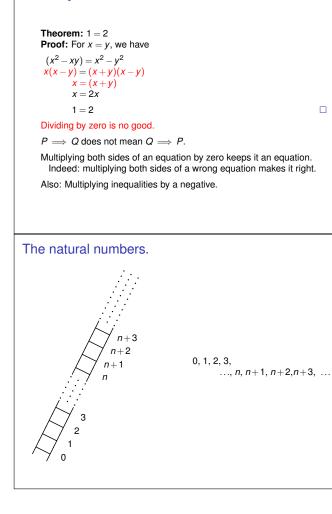
Consider example ..

- $\blacktriangleright 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes in between p_k and q.

Be careful.

Theorem: 3 = 4	
Proof: Assume 3 = 4.	
Start with $12 = 12$.	
Divide one side by 3 and the other by 4 to get $4 = 3$.	
By commutativity theorem holds.	
Don't assume what you want to prove!	

Be really careful!



Summary: Note 2.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition: To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$. By Contradiction: To Prove: P Assume $\neg P$. Prove False . By Cases: informal. Universal: show that statement holds in all cases. Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked. Careful when proving!

Don't assume the theorem. Divide by zero.Watch converse. ...

A formula.

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050! Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$. It is a statement about all natural numbers. $\forall (n \in N) : P(n)$. P(n) is " $\sum_{i=0}^{n} i \frac{(n)(n+1)}{2}$ ". Principle of Induction: \blacktriangleright Prove P(0). \blacktriangleright Assume P(k), "Induction Hypothesis"

▶ Prove P(k+1). "Induction Step."

CS70: Note 3. Induction!

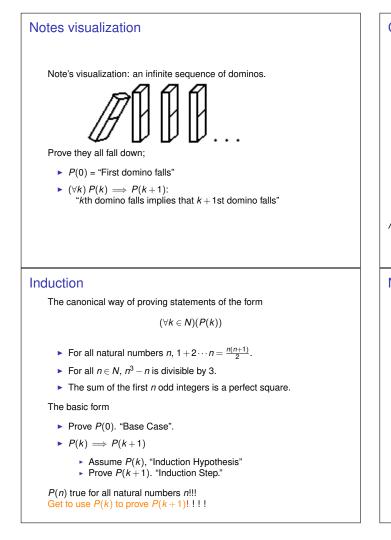
1. The natural numbers.

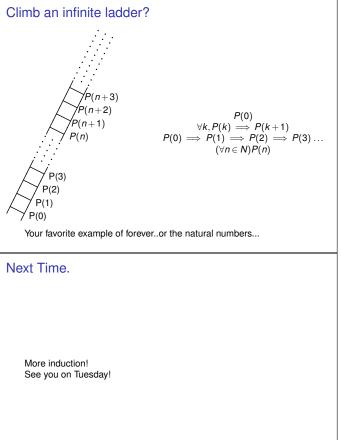
- 2. 5 year old Gauss.
- 3. ..and Induction.
- 4. Simple Proof.

Gauss induction proof.

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0$, $P(k) \implies P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$ $1 + \cdots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$

P(k+1)! By principle of induction...





Gauss and Induction
Child Gauss:
$$(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?
Idea: assume predicate $P(n)$ for $n = k$. $P(k)$ is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.
Is predicate, $P(n)$ true for $n = k + 1$?
 $\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$.
How about $k + 2$. Same argument starting at $k + 1$ works!
Induction Step. $P(k) \implies P(k+1)$.
Is this a proof? It shows that we can always move to the next step.
Need to start somewhere. $P(0)$ is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.
Statement is true for $n = 0$ $P(0)$ is true
plus inductive step \implies true for $n = 1$ ($P(0) \land (P(0) \implies P(1)) \implies P(1)$
plus inductive step \implies true for $n = 2$ ($P(1) \land (P(1) \implies P(2)) \implies P(2)$
...
True for $n = k \implies$ true for $n = k + 1$ ($P(k) \land (P(k) \implies P(k+1)) \implies P(k+1)$)
...
Predicate, $P(n)$, True for all natural numbers! Proof by Induction.