Last time:

Last time:

Shared (and sort of kept) secrets.

Last time:

Shared (and sort of kept) secrets.

Main Idea: d+1 points determine a polynomial.

Last time:

Shared (and sort of kept) secrets.

Main Idea: d + 1 points determine a polynomial.

Construct polynomial of degree k, with P(0) = s.

Last time:

Shared (and sort of kept) secrets.

Main Idea: d+1 points determine a polynomial.

Construct polynomial of degree k, with P(0) = s.

Give out any *n*-points other than (0, P(0)).

Last time:

Shared (and sort of kept) secrets.

Main Idea: d+1 points determine a polynomial.

Construct polynomial of degree k, with P(0) = s.

Give out any n-points other than (0, P(0)).

Today: Coding Theory.

Last time:

Shared (and sort of kept) secrets.

Main Idea: d+1 points determine a polynomial.

Construct polynomial of degree k, with P(0) = s.

Give out any n-points other than (0, P(0)).

Today: Coding Theory.
Tolerate packet drops.

Last time:

Shared (and sort of kept) secrets.

Main Idea: d+1 points determine a polynomial.

Construct polynomial of degree k, with P(0) = s.

Give out any n-points other than (0, P(0)).

Today: Coding Theory.

Tolerate packet drops. Erasure Codes.

Last time:

Shared (and sort of kept) secrets.

Main Idea: d+1 points determine a polynomial.

Construct polynomial of degree k, with P(0) = s.

Give out any n-points other than (0, P(0)).

Today: Coding Theory.

Tolerate packet drops. Erasure Codes.

Tolerate errors in packets.

Last time:

Shared (and sort of kept) secrets.

Main Idea: d+1 points determine a polynomial.

Construct polynomial of degree k, with P(0) = s.

Give out any *n*-points other than (0, P(0)).

Today: Coding Theory.

Tolerate packet drops. Erasure Codes.

Tolerate errors in packets. Error Correction.

Exactly one polynomial of degree d contains any d+1 points.

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d+1 coefficients.

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d + 1 coefficients.

Any set of d+1 points determines the polynomial.

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d + 1 coefficients.

Any set of d+1 points determines the polynomial.

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d + 1 coefficients.

Any set of d+1 points determines the polynomial.

Stare at the above.

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d+1 coefficients.

Any set of d+1 points determines the polynomial.

Stare at the above. What does it mean?

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d + 1 coefficients. Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean? Many representations of a polynomial!

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d + 1 coefficients. Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean? Many representations of a polynomial! One coefficient represention.

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d + 1 coefficients.

Any set of d+1 points determines the polynomial.

Stare at the above. What does it mean?

Many representations of a polynomial!

One coefficient represention.

Many, many point, value representations.

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d + 1 coefficients.

Any set of d+1 points determines the polynomial.

Stare at the above. What does it mean?

Many representations of a polynomial!

One coefficient represention.

Many, many point, value representations.

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d+1 coefficients.

Any set of d+1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point, value representations.

Some details:

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d + 1 coefficients.

Any set of d+1 points determines the polynomial.

Stare at the above. What does it mean?

Many representations of a polynomial!

One coefficient represention.

Many, many point, value representations.

Some details:

Degree *d* generally degree "at most" *d*.

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d + 1 coefficients. Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point, value representations.

Some details:

Degree *d* generally degree "at most" *d*. (example: choose 10 points on a line.)

Exactly one polynomial of degree d contains any d+1 points.

Assumption: a field, in particular, arithmetic $\mod p$.

Big Idea:

A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d + 1 coefficients. Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point, value representations.

Some details:

Degree d generally degree "at most" d. (example: choose 10 points on a line.) Arithmetic (mod p) \Longrightarrow work with $O(\log p)$ bit numbers.

Satellite

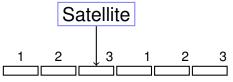
Satellite

3 packet message.

Satellite

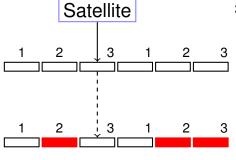
3 packet message.

Lose 3 out 6 packets.



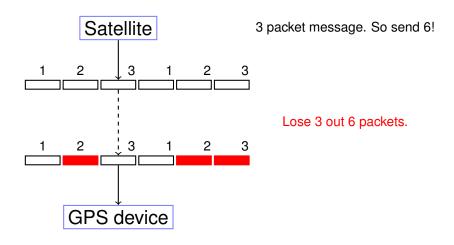
3 packet message. So send 6!

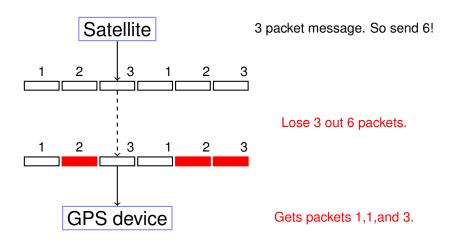
Lose 3 out 6 packets.



3 packet message. So send 6!

Lose 3 out 6 packets.





Solution Idea.

n packet message, channel that loses k packets.

Solution Idea.

n packet message, channel that loses k packets.

Must send n+k packets!

Solution Idea.

n packet message, channel that loses k packets. Must send n+k packets! Any n packets

n packet message, channel that loses k packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any n packets should allow reconstruction of n packet message.

Any *n* point values

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n-1 polynomial.

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any n point values allow reconstruction of degree n-1 polynomial.

Seem related?

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any n point values allow reconstruction of degree n-1 polynomial.

Seem related?

Use polynomials.

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any n point values allow reconstruction of degree n-1 polynomial.

Seem related?

Use polynomials.

Big Idea View:

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any *n* point values allow reconstruction of degree n-1 polynomial.

Seem related?

Use polynomials.

Big Idea View:

Any set of *n* points contain information about *n* coefficients.

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any n point values allow reconstruction of degree n-1 polynomial.

Seem related?

Use polynomials.

Big Idea View:

Any set of *n* points contain information about *n* coefficients. or even any other set of *n* points!!!

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any n point values allow reconstruction of degree n-1 polynomial.

Seem related?

Use polynomials.

Big Idea View:

Any set of *n* points contain information about *n* coefficients. or even any other set of *n* points!!!

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any n point values allow reconstruction of degree n-1 polynomial.

Seem related?

Use polynomials.

Big Idea View:

Any set of *n* points contain information about *n* coefficients. or even any other set of *n* points!!!

"Information" about coefficients smeared across the *n* points.

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any *n* point values allow reconstruction of degree n-1 polynomial.

Seem related?

Use polynomials.

Big Idea View:

Any set of *n* points contain information about *n* coefficients. or even any other set of *n* points!!!

"Information" about coefficients smeared across the *n* points.

Linear Algebra View:

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any n point values allow reconstruction of degree n-1 polynomial.

Seem related?

Use polynomials.

Big Idea View:

Any set of *n* points contain information about *n* coefficients. or even any other set of *n* points!!!

"Information" about coefficients smeared across the *n* points.

Linear Algebra View:

Representing vector (message) in different basis.

n packet message, channel that loses *k* packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any n point values allow reconstruction of degree n-1 polynomial.

Seem related?

Use polynomials.

Big Idea View:

Any set of *n* points contain information about *n* coefficients. or even any other set of *n* points!!!

"Information" about coefficients smeared across the n points.

Linear Algebra View:

Representing vector (message) in different basis.

Many bases!

Problem: Want to send a message with *n* packets.

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n+k packets and recover message?

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n+k packets and recover message?

A degree n-1 polynomial determined by any n points!

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n+k packets and recover message?

A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = m_0, m_1, \dots, m_{n-1} .

- 1. Choose prime $p \approx 2^b$ for packet size b.
- 2. $P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$.
- 3. Send P(1), ..., P(n+k).

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n+k packets and recover message?

A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = m_0, m_1, \dots, m_{n-1} .

- 1. Choose prime $p \approx 2^b$ for packet size b.
- 2. $P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$.
- 3. Send P(1), ..., P(n+k).

Any n of the n+k packets gives polynomial ...

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n+k packets and recover message?

A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = m_0, m_1, \dots, m_{n-1} .

- 1. Choose prime $p \approx 2^b$ for packet size b.
- 2. $P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$.
- 3. Send P(1), ..., P(n+k).

Any n of the n+k packets gives polynomial ...and message!

Satellite

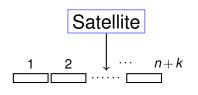
Satellite

n packet message.

Satellite

n packet message.

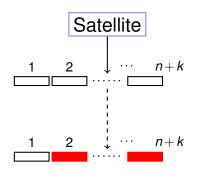
Lose *k* packets.



n packet message.

So send n+k points on polynomial.

Lose *k* packets.

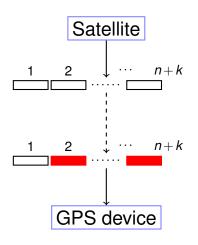


GPS device

n packet message.

So send n+k points on polynomial.

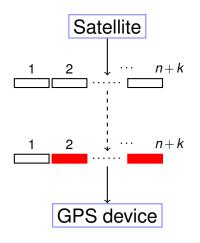
Lose *k* packets.



n packet message.

So send n+k points on polynomial.

Lose *k* packets.

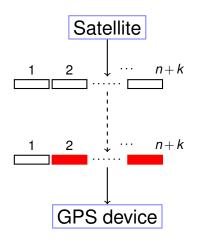


n packet message.

So send n+k points on polynomial.

Lose *k* packets.

Any *n* packets (points) is enough!



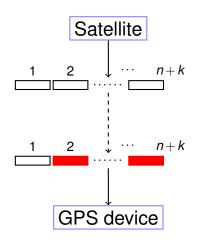
n packet message.

So send n+k points on polynomial.

Lose *k* packets.

Any *n* packets (points) is enough!

n packet message.



n packet message.

So send n+k points on polynomial.

Lose *k* packets.

Any *n* packets (points) is enough!

n packet message.

Optimal.

..give Secret Sharing.

- ..give Secret Sharing.
- ..give Erasure Codes.

- ..give Secret Sharing.
- ..give Erasure Codes.

Error Correction:

- ..give Secret Sharing.
- ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loses.)

- ..give Secret Sharing.
- ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loses.)

Additional Challenge: Finding which packets are corrupt.

Error Correction

Satellite

GPS device

Which one was corrupted?

Satellite

3 packet message.

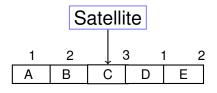
GPS device

Satellite

3 packet message.

Corrupts 1 packets.

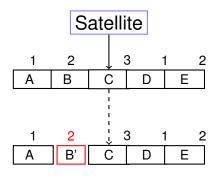
GPS device



3 packet message. Send 5.

Corrupts 1 packets.

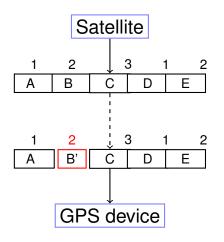
GPS device



3 packet message. Send 5.

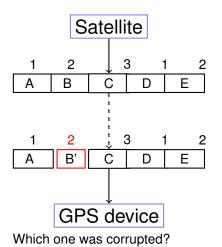
Corrupts 1 packets.

GPS device



3 packet message. Send 5.

Corrupts 1 packets.



3 packet message. Send 5.

Corrupts 1 packets.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - $P(1) = m_1, ..., P(n) = m_n$.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ► $P(1) = m_1, ..., P(n) = m_n$.
 - ► Comment: could encode with packets as coefficients.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ► $P(1) = m_1, ..., P(n) = m_n$.
 - Comment: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ▶ $P(1) = m_1, ..., P(n) = m_n$.
 - Comment: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

After noisy channel: Recieve values R(1), ..., R(n+2k).

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ► $P(1) = m_1, ..., P(n) = m_n$.
 - Comment: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

After noisy channel: Recieve values R(1), ..., R(n+2k).

Properties:

(1) P(i) = R(i) for at least n + k points i,

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ► $P(1) = m_1, ..., P(n) = m_n$.
 - Comment: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

After noisy channel: Recieve values R(1), ..., R(n+2k).

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ▶ $P(1) = m_1, ..., P(n) = m_n$.
 - Comment: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

After noisy channel: Recieve values R(1), ..., R(n+2k).

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

P(x): degree n-1 polynomial.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$

P(x): degree n-1 polynomial. Send $P(1), \ldots, P(n+2k)$ Receive $R(1), \ldots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

```
P(x): degree n-1 polynomial.
Send P(1), \ldots, P(n+2k)
Receive R(1), \ldots, R(n+2k)
At most k i's where P(i) \neq R(i).
```

Properties:

(1) P(i) = R(i) for at least n + k points i,

P(x): degree n-1 polynomial. Send P(1),...,P(n+2k)Receive R(1),...,R(n+2k)At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial

P(x): degree n-1 polynomial. Send $P(1), \ldots, P(n+2k)$ Receive $R(1), \ldots, R(n+2k)$ At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

P(x): degree n-1 polynomial. Send $P(1), \ldots, P(n+2k)$ Receive $R(1), \ldots, R(n+2k)$ At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

P(x): degree n-1 polynomial. Send $P(1), \ldots, P(n+2k)$ Receive $R(1), \ldots, R(n+2k)$ At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

(1) Sure.

P(x): degree n-1 polynomial. Send P(1),...,P(n+2k)Receive R(1),...,R(n+2k)At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

(1) Sure. Only *k* corruptions.

P(x): degree n-1 polynomial.

Send $P(1), \ldots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.

P(x): degree n-1 polynomial.

Send $P(1), \ldots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.

Q(x) agrees with R(i), n+k times.

P(x): degree n-1 polynomial.

Send $P(1), \ldots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k.

P(x): degree n-1 polynomial.

Send $P(1), \ldots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.
 - Total points contained by both: 2n+2k. *P* Pigeons.

P(x): degree n-1 polynomial. Send P(1),...,P(n+2k)Receive R(1),...,R(n+2k)At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons. Total points to choose from : n+2k. *H* Holes.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k. H Holes.

Points contained by both $: \ge n$.

```
P(x): degree n-1 polynomial.
Send P(1), \ldots, P(n+2k)
Receive R(1), \ldots, R(n+2k)
At most k is where P(i) \neq R(i).
```

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.
 - Total points contained by both: 2n+2k. *P* Pigeons.
- Total points to choose from : n+2k. H Holes.
 - Points contained by both $: \ge n$. $\ge P H$ Collisions.

```
P(x): degree n-1 polynomial.
Send P(1), \dots, P(n+2k)
Receive R(1), \dots, R(n+2k)
At most k is where P(i) \neq R(i).
```

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.
 - Total points contained by both: 2n+2k. P Pigeons.

Total points to choose from : n+2k. H Holes.

Points contained by both $: \ge n$. $\ge P - H$ Collisions.

 \implies Q(i) = P(i) at n points.

```
P(x): degree n-1 polynomial.
Send P(1), \dots, P(n+2k)
Receive R(1), \dots, R(n+2k)
```

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k. H Holes.

Points contained by both $: \ge n$. $\ge P - H$ Collisions.

 $\Rightarrow Q(i) = P(i)$ at *n* points.

$$\implies Q(x) = P(x).$$

Properties: proof.

```
P(x): degree n-1 polynomial.
Send P(1), \dots, P(n+2k)
Receive R(1), \dots, R(n+2k)
At most k is where P(i) \neq R(i).
```

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.
 - Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k. H Holes.

Points contained by both $: \ge n$. $\ge P - H$ Collisions.

 \implies Q(i) = P(i) at n points.

$$\implies Q(x) = P(x).$$

3 packet message.

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

Only one i, where $R(i) \neq P(i)$.

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

Only one i, where $R(i) \neq P(i)$.

P(x) contains 4 of the points R(1), ..., R(5).

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

Only one i, where $R(i) \neq P(i)$.

P(x) contains 4 of the points $R(1), \dots, R(5)$.

Another degree 3 polynomial, Q(x)

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

Only one i, where $R(i) \neq P(i)$.

P(x) contains 4 of the points R(1), ..., R(5).

Another degree 3 polynomial, Q(x) contains 4 of the points R(1),...,R(5).

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

Only one i, where $R(i) \neq P(i)$.

P(x) contains 4 of the points R(1), ..., R(5).

Another degree 3 polynomial, Q(x) contains 4 of the points R(1),...,R(5).

P(x) and Q(x) have 3 points in common.

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

Only one i, where $R(i) \neq P(i)$.

P(x) contains 4 of the points R(1), ..., R(5).

Another degree 3 polynomial, Q(x) contains 4 of the points R(1),...,R(5).

P(x) and Q(x) have 3 points in common.

Since:

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

Only one i, where $R(i) \neq P(i)$.

P(x) contains 4 of the points R(1), ..., R(5).

Another degree 3 polynomial, Q(x) contains 4 of the points R(1),...,R(5).

P(x) and Q(x) have 3 points in common.

Since: P(x) contains 4, Q(x) contains 4.

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

Only one i, where $R(i) \neq P(i)$.

P(x) contains 4 of the points R(1), ..., R(5).

Another degree 3 polynomial, Q(x) contains 4 of the points R(1),...,R(5).

P(x) and Q(x) have 3 points in common.

Since: P(x) contains 4, Q(x) contains 4. There are only 5. So they agree on 8-5 = 3.

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

Only one i, where $R(i) \neq P(i)$.

P(x) contains 4 of the points $R(1), \dots, R(5)$.

Another degree 3 polynomial, Q(x) contains 4 of the points R(1),...,R(5).

P(x) and Q(x) have 3 points in common.

Since: P(x) contains 4, Q(x) contains 4. There are only 5. So they agree on 8-5 = 3.

P Q

Р

P Q

Q

Q

3 packet message.

Send n+2k=5 points on degree 3 polynomial P(x).

Recieve: R(1), R(2), R(3), R(4), R(5).

Only one i, where $R(i) \neq P(i)$.

P(x) contains 4 of the points $R(1), \dots, R(5)$.

Another degree 3 polynomial, Q(x) contains 4 of the points R(1),...,R(5).

P(x) and Q(x) have 3 points in common.

Since: P(x) contains 4, Q(x) contains 4. There are only 5. So they agree on 8-5 = 3.

P Q

Р

P Q

Q

Q

Degree 3 \implies P(x) = Q(x)

Message: 3, 0, 6.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \pmod{7}$.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has

P(1) = 3, P(2) = 0, P(3) = 6 modulo 7.

Send: P(1) = 3, P(2) = 0, P(3) = 6,

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \pmod{7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has P(1) = 3, P(2) = 0, P(3) = 6 modulo 7.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

(Aside: Message in plain text!)

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \pmod{7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has P(1) = 3, P(2) = 0, P(3) = 6 modulo 7.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Brute Force:

For each subset of n+k points

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them.

Brute Force:

Brute Force:

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,
 - 1. **unique** degree n-1 polynomial Q(x) that fits n of them

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,
 - 1. **unique** degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n+k points

Brute Force:

For each subset of n+k points

Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,
 - 1. **unique** degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n+k points

$$\implies P(x) = Q(x).$$

Brute Force:

For each subset of n+k points

Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,
 - 1. **unique** degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n+k points $\Rightarrow P(x) = Q(x)$.

Reconstructs P(x) and only P(x)!!

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2x^2 + p_1x + p_0$ that contains n + k = 3 + 1 points.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2x^2 + p_1x + p_0$ that contains n + k = 3 + 1 points. All equations..

$$p_2 + p_1 + p_0 \equiv 3 \pmod{7}$$

 $4p_2 + 2p_1 + p_0 \equiv 1 \pmod{7}$
 $2p_2 + 3p_1 + p_0 \equiv 6 \pmod{7}$
 $2p_2 + 4p_1 + p_0 \equiv 0 \pmod{7}$
 $4p_2 + 5p_1 + p_0 \equiv 3 \pmod{7}$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

Assume point 1 is wrong

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

Assume point 1 is wrong and solve..

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

Assume point 1 is wrong and solve..no consistent solution!

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

$$p_2 + p_1 + p_0 \equiv 3 \pmod{7}$$

 $4p_2 + 2p_1 + p_0 \equiv 1 \pmod{7}$
 $2p_2 + 3p_1 + p_0 \equiv 6 \pmod{7}$
 $2p_2 + 4p_1 + p_0 \equiv 0 \pmod{7}$
 $4p_2 + 5p_1 + p_0 \equiv 3 \pmod{7}$

Assume point 1 is wrong and solve...no consistent solution! Assume point 2 is wrong

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

$$p_2 + p_1 + p_0 \equiv 3 \pmod{7}$$

 $4p_2 + 2p_1 + p_0 \equiv 1 \pmod{7}$
 $2p_2 + 3p_1 + p_0 \equiv 6 \pmod{7}$
 $2p_2 + 4p_1 + p_0 \equiv 0 \pmod{7}$
 $4p_2 + 5p_1 + p_0 \equiv 3 \pmod{7}$

Assume point 1 is wrong and solve...no consistent solution! Assume point 2 is wrong and solve...

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

$$p_2 + p_1 + p_0 \equiv 3 \pmod{7}$$

 $4p_2 + 2p_1 + p_0 \equiv 1 \pmod{7}$
 $2p_2 + 3p_1 + p_0 \equiv 6 \pmod{7}$
 $2p_2 + 4p_1 + p_0 \equiv 0 \pmod{7}$
 $4p_2 + 5p_1 + p_0 \equiv 3 \pmod{7}$

Assume point 1 is wrong and solve...no consistent solution! Assume point 2 is wrong and solve...consistent solution!

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots R(m = n + 2k)$.

$$P(x)=p_{n-1}x^{n-1}+\cdots p_0$$
 and receive $R(1),\ldots R(m=n+2k)$.
$$p_{n-1}+\cdots p_0 \equiv R(1) \pmod p$$

$$P(x)=p_{n-1}x^{n-1}+\cdots p_0$$
 and receive $R(1),\ldots R(m=n+2k)$.
$$p_{n-1}+\cdots p_0 \equiv R(1) \pmod p$$

$$p_{n-1}2^{n-1}+\cdots p_0 \equiv R(2) \pmod p$$

$$P(x)=p_{n-1}x^{n-1}+\cdots p_0$$
 and receive $R(1),\ldots R(m=n+2k)$.
$$p_{n-1}+\cdots p_0 \equiv R(1) \pmod p$$

$$p_{n-1}2^{n-1}+\cdots p_0 \equiv R(2) \pmod{p}$$

$$p_{n-1}i^{n-1}+\cdots p_0 \equiv R(i) \pmod{p}$$

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0 \text{ and receive } R(1), \dots R(m=n+2k).$$

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$

$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$\vdots$$

$$p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$\vdots$$

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!!

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0 \text{ and receive } R(1), \dots R(m = n + 2k).$$

$$\begin{array}{cccc} p_{n-1} + \cdots p_0 & \equiv & R(1) & (\text{mod } p) \\ p_{n-1}2^{n-1} + \cdots p_0 & \equiv & R(2) & (\text{mod } p) \\ & & & & & \\ & & & & & \\ p_{n-1}i^{n-1} + \cdots p_0 & \equiv & R(i) & (\text{mod } p) \\ & & & & & \\ & & & & \\ p_{n-1}(m)^{n-1} + \cdots p_0 & \equiv & R(m) & (\text{mod } p) \end{array}$$

Error!! Where???

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0 \text{ and receive } R(1), \dots R(m = n + 2k).$$

$$\begin{array}{cccc} p_{n-1} + \cdots p_0 & \equiv & R(1) \pmod{p} \\ p_{n-1}2^{n-1} + \cdots p_0 & \equiv & R(2) \pmod{p} \\ & & & & \\ & & & & \\ & & & & \\ p_{n-1}i^{n-1} + \cdots p_0 & \equiv & R(i) \pmod{p} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Error!! Where??? Could be anywhere!!!

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0 \text{ and receive } R(1), \dots R(m = n+2k).$$

$$\begin{array}{cccc} p_{n-1} + \cdots p_0 & \equiv & R(1) \pmod{p} \\ p_{n-1}2^{n-1} + \cdots p_0 & \equiv & R(2) \pmod{p} \\ & & & & \\ & & & & \\ & & & & \\ p_{n-1}i^{n-1} + \cdots p_0 & \equiv & R(i) \pmod{p} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Error!! Where???
Could be anywhere!!! ...so try everywhere.

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
$$\begin{aligned} p_{n-1} + \cdots p_0 &\equiv R(1) \pmod{p} \\ p_{n-1}2^{n-1} + \cdots p_0 &\equiv R(2) \pmod{p} \\ & & & & & & & \\ p_{n-1}i^{n-1} + \cdots p_0 &\equiv R(i) \pmod{p} \\ & & & & & & & \\ p_{n-1}(m)^{n-1} + \cdots p_0 &\equiv R(m) \pmod{p} \end{aligned}$$

Error!! Where???

Could be anywhere!!! ...so try everywhere.

Runtime: $\binom{n+2k}{k}$ possibilitities.

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$

$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$\cdot \qquad p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$\cdot \qquad p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!! Where???

Could be anywhere!!! ...so try everywhere.

Runtime: $\binom{n+2k}{k}$ possibilitities.

Something like $(n/k)^k$... Exponential in k!

Error!! Where???

Could be anywhere!!! ...so try everywhere.

Runtime: $\binom{n+2k}{k}$ possibilitities.

Something like $(n/k)^k$... Exponential in k!

How do we find where the bad packets are efficiently?!?!?!

Oh where, Oh where

Oh where, Oh where has my little dog gone?

Oh where, Oh where has my little dog gone? Oh where, oh where can he be

Oh where, Oh where has my little dog gone?
Oh where, oh where can he be
With his ears cut short

Oh where, Oh where has my little dog gone? Oh where, oh where can he be With his ears cut short And his tail cut long

Oh where, Oh where has my little dog gone? Oh where, oh where can he be

With his ears cut short And his tail cut long Oh where, oh where can he be?

Oh where, Oh where has my little dog gone? Oh where, oh where can he be

With his ears cut short And his tail cut long Oh where, oh where can he be?

Oh where, Oh where

Oh where, Oh where has my little dog gone? Oh where, oh where can he be

With his ears cut short And his tail cut long Oh where, oh where can he be?

Oh where, Oh where

Oh where, Oh where has my little dog gone?
Oh where, oh where can he be
With his ears cut short

And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where have my packets gone..

Oh where, Oh where has my little dog gone?
Oh where, oh where can he be

With his ears cut short And his tail cut long Oh where, oh where can he be?

Oh where, Oh where have my packets gone.. wrong?

Oh where, Oh where has my little dog gone?
Oh where, oh where can he be
With his ears cut short

And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where have my packets gone.. wrong? Oh where, oh where do they not fit.

Oh where, Oh where has my little dog gone?
Oh where, oh where can he be

With his ears cut short And his tail cut long Oh where, oh where can he be?

Oh where, Oh where have my packets gone.. wrong? Oh where, oh where do they not fit. With the polynomial well put

Oh where, Oh where has my little dog gone?
Oh where, oh where can he be

With his ears cut short And his tail cut long Oh where, oh where can he be?

Oh where, Oh where have my packets gone.. wrong? Oh where, oh where do they not fit.

With the polynomial well put But the channel a bit wrong

Oh where, Oh where has my little dog gone?
Oh where, oh where can he be

With his ears cut short And his tail cut long Oh where, oh where can he be?

Oh where, Oh where have my packets gone.. wrong? Oh where, oh where do they not fit.

With the polynomial well put But the channel a bit wrong Where, oh where do we look?

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$.

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$0 \times (p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!!

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know.

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)$

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2)$

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2)...$

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_i = i$ for some j

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_j = i$ for some j

Multiply equations by $E(\cdot)$.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_i = i$ for some j

Multiply equations by $E(\cdot)$. (Above E(x) = (x-2).)

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

$$E(i) = 0$$
 if and only if $e_i = i$ for some j

Multiply equations by $E(\cdot)$. (Above E(x) = (x-2).)

All equations satisfied!!

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2x^2 + p_1x + p_0$ that contains n + k = 3 + 1 points.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2x^2 + p_1x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$(p_2 + p_1 + p_0) \equiv (3)$$
 (mod 7)
 $(4p_2 + 2p_1 + p_0) \equiv (1)$ (mod 7)
 $(2p_2 + 3p_1 + p_0) \equiv (6)$ (mod 7)
 $(2p_2 + 4p_1 + p_0) \equiv (0)$ (mod 7)
 $(4p_2 + 5p_1 + p_0) \equiv (3)$ (mod 7)

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$(p_2 + p_1 + p_0) \equiv (3)$$
 (mod 7)
 $(4p_2 + 2p_1 + p_0) \equiv (1)$ (mod 7)
 $(2p_2 + 3p_1 + p_0) \equiv (6)$ (mod 7)
 $(2p_2 + 4p_1 + p_0) \equiv (0)$ (mod 7)
 $(4p_2 + 5p_1 + p_0) \equiv (3)$ (mod 7)

Error locator polynomial: (x-2).

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{llll} (1-2)(p_2+p_1+p_0) & \equiv & (3)(1-2) \pmod{7} \\ (2-2)(4p_2+2p_1+p_0) & \equiv & (1)(2-2) \pmod{7} \\ (3-2)(2p_2+3p_1+p_0) & \equiv & (6)(3-2) \pmod{7} \\ (4-2)(2p_2+4p_1+p_0) & \equiv & (0)(4-2) \pmod{7} \\ (5-2)(4p_2+5p_1+p_0) & \equiv & (3)(5-2) \pmod{7} \end{array}$$

Error locator polynomial: (x-2). Multiply equation i by (i-2).

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{rcl} (1-2)(p_2+p_1+p_0) & \equiv & (3)(1-2) \pmod{7} \\ (2-2)\frac{4p_2+2p_1+p_0}{2} & \equiv & (1)(2-2) \pmod{7} \\ (3-2)(2p_2+3p_1+p_0) & \equiv & (6)(3-2) \pmod{7} \\ (4-2)(2p_2+4p_1+p_0) & \equiv & (0)(4-2) \pmod{7} \\ (5-2)(4p_2+5p_1+p_0) & \equiv & (3)(5-2) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{rcl} (1-2)(p_2+p_1+p_0) & \equiv & (3)(1-2) \pmod{7} \\ (2-2)\frac{4p_2+2p_1+p_0}{2} & \equiv & (1)(2-2) \pmod{7} \\ (3-2)(2p_2+3p_1+p_0) & \equiv & (6)(3-2) \pmod{7} \\ (4-2)(2p_2+4p_1+p_0) & \equiv & (0)(4-2) \pmod{7} \\ (5-2)(4p_2+5p_1+p_0) & \equiv & (3)(5-2) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial!

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{llll} (1-2)(p_2+p_1+p_0) & \equiv & (3)(1-2) \pmod{7} \\ (2-2)(4p_2+2p_1+p_0) & \equiv & (1)(2-2) \pmod{7} \\ (3-2)(2p_2+3p_1+p_0) & \equiv & (6)(3-2) \pmod{7} \\ (4-2)(2p_2+4p_1+p_0) & \equiv & (0)(4-2) \pmod{7} \\ (5-2)(4p_2+5p_1+p_0) & \equiv & (3)(5-2) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form:

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{rcl} (1-2)(p_2+p_1+p_0) & \equiv & (3)(1-2) \pmod{7} \\ (2-2)\frac{4p_2+2p_1+p_0}{2} & \equiv & (1)(2-2) \pmod{7} \\ (3-2)(2p_2+3p_1+p_0) & \equiv & (6)(3-2) \pmod{7} \\ (4-2)(2p_2+4p_1+p_0) & \equiv & (0)(4-2) \pmod{7} \\ (5-2)(4p_2+5p_1+p_0) & \equiv & (3)(5-2) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{llll} (1-e)(p_2+p_1+p_0) & \equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) & \equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) & \equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) & \equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) & \equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{llll} (1-e)(p_2+p_1+p_0) & \equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) & \equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) & \equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) & \equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) & \equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

4 unknowns $(p_0, p_1, p_2 \text{ and } e)$,

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) & \equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) & \equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) & \equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) & \equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) & \equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

4 unknowns (p_0 , p_1 , p_2 and e), 5 nonlinear equations.

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m) \pmod{p}$$

$$E(1)(p_{n-1}+\cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1}+\cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1}+\cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

 \vdots
 $E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$
 \vdots
 $E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations,

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

 \vdots
 $E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$
 \vdots
 $E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns.

$$E(1)(p_{n-1}+\cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1}+\cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1}+\cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

$$E(1)(p_{n-1}+\cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1}+\cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1}+\cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m=n+2k satisfied equations, n+k unknowns. But nonlinear! Let $Q(x)=E(x)P(x)=a_{n+k-1}x^{n+k-1}+\cdots a_0$.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

$$m = n + 2k$$
 satisfied equations, $n + k$ unknowns. But nonlinear!

Let
$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$$
.

Equations:

$$Q(i) = R(i)E(i).$$

$$E(1)(p_{n-1}+\cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1}+\cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1}+\cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

$$m = n + 2k$$
 satisfied equations, $n + k$ unknowns. But nonlinear!

Let
$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$$
.

Equations:

$$Q(i) = R(i)E(i).$$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

$$m = n + 2k$$
 satisfied equations, $n + k$ unknowns. But nonlinear!

Let
$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$$
.

Equations:

$$Q(i) = R(i)E(i).$$

$$E(1)(p_{n-1}+\cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1}+\cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1}+\cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

$$m = n + 2k$$
 satisfied equations, $n + k$ unknowns. But nonlinear!

Let
$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$$
.

Equations:

$$Q(i) = R(i)E(i).$$

and linear in a_i and coefficients of E(x)!

Finding Q(x) and E(x)?

► *E*(*x*) has degree *k*

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$$

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$$

 $\implies k$ (unknown) coefficients.

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

▶ Q(x) = P(x)E(x) has degree n+k-1

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

ightharpoonup Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

ightharpoonup Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 $\implies n+k$ (unknown) coefficients.

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

ightharpoonup Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 $\implies n+k$ (unknown) coefficients.

Number of unknown coefficients:

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

ightharpoonup Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 $\implies n+k$ (unknown) coefficients.

Number of unknown coefficients: n+2k.

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$

 $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$
:

For all points $1, \ldots, i, n+2k=m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}$$

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$\begin{array}{rcl} a_{n+k-1} + \ldots a_0 & \equiv & R(1)(1 + b_{k-1} \cdots b_0) \pmod{p} \\ a_{n+k-1}(2)^{n+k-1} + \ldots a_0 & \equiv & R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p} \\ & \vdots \\ a_{n+k-1}(m)^{n+k-1} + \ldots a_0 & \equiv & R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p} \end{array}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$\begin{array}{rcl} a_{n+k-1} + \ldots a_0 & \equiv & R(1)(1 + b_{k-1} \cdots b_0) \pmod{p} \\ a_{n+k-1}(2)^{n+k-1} + \ldots a_0 & \equiv & R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p} \\ & & \vdots \\ a_{n+k-1}(m)^{n+k-1} + \ldots a_0 & \equiv & R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p} \end{array}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

Find
$$P(x) = Q(x)/E(x)$$
.

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

Find
$$P(x) = Q(x)/E(x)$$
.

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

Find
$$P(x) = Q(x)/E(x)$$
.

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

Find
$$P(x) = Q(x)/E(x)$$
.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$
 $6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$
 $a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$
 $6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 & \equiv & 3(1-b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 & \equiv & 1(2-b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 & \equiv & 6(3-b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 & \equiv & 0(4-b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 & \equiv & 3(5-b_0) \pmod{7} \end{array}$$

$$a_3 = 1$$
, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$
 $6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$
 $a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$
 $6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$

$$a_3 = 1$$
, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.
 $Q(x) = x^3 + 6x^2 + 6x + 5$.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$
 $6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$
 $a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$
 $6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$

$$a_3 = 1$$
, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.
 $Q(x) = x^3 + 6x^2 + 6x + 5$.
 $E(x) = x - 2$.

$$Q(x) = x^3 + 6x^2 + 6x + 5.$$

 $Q(x) = x^3 + 6x^2 + 6x + 5.$ E(x) = x - 2.

$$Q(x) = x^3 + 6x^2 + 6x + 5.$$

 $E(x) = x - 2.$

x - 2) $x^3 + 6 x^2 + 6 x + 5$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

x + 5

x + 5x - 2

$$P(x) = x^2 + x + 1$$

$$P(x) = x^2 + x + 1$$

Message is $P(1) = 3$, $P(2) = 0$, $P(3) = 6$.

$$P(x) = x^2 + x + 1$$

Message is $P(1) = 3$, $P(2) = 0$, $P(3) = 6$.
What is $\frac{x-2}{y-2}$?

$$P(x) = x^2 + x + 1$$

Message is $P(1) = 3$, $P(2) = 0$, $P(3) = 6$.

What is $\frac{x-2}{x-2}$? 1

$$P(x) = x^2 + x + 1$$

Message is $P(1) = 3$, $P(2) = 0$, $P(3) = 6$.
What is $\frac{x-2}{x-2}$? 1
Except at $x = 2$?

$$P(x) = x^2 + x + 1$$

Message is $P(1) = 3$, $P(2) = 0$, $P(3) = 6$.
What is $\frac{x-2}{x-2}$? 1

Except at x = 2? Hole there?

Error Correction: Berlekamp-Welsh

Message: m_1, \ldots, m_n .

Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send P(1), ..., P(n+2k).

Receiver:

- 1. Receive R(1), ..., R(n+2k).
- 2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x) and E(x).
- 3. Compute P(x) = Q(x)/E(x).
- 4. Compute P(1), ..., P(n).

You have error locator polynomial!

You have error locator polynomial!

Where oh where have my packets gone wrong?

You have error locator polynomial! Where oh where have my packets gone wrong? Factor?

You have error locator polynomial! Where oh where have my packets gone wrong? Factor? Sure.

You have error locator polynomial!
Where oh where have my packets gone wrong?
Factor? Sure.
Check all values?

You have error locator polynomial!
Where oh where have my packets gone wrong?
Factor? Sure.
Check all values? Sure.

You have error locator polynomial!
Where oh where have my packets gone wrong?
Factor? Sure.
Check all values? Sure.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.

Check all values? Sure.

Efficiency?

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.

Check all values? Sure.

Efficiency? Sure.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.

Check all values? Sure.

Efficiency? Sure. Only n+2k values.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.

Check all values? Sure.

Efficiency? Sure. Only n+2k values.

See where it is 0.

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Existence: there is a P(x) and E(x) that satisfy equations.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

$$Q'(x)E(x)$$
 and $Q(x)E'(x)$ are degree $n+2k-1$

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1 and agree on n+2k points

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1 and agree on n+2k points E(x) and E'(x) have at most k zeros each.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1 and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1 and agree on n+2k points

E(x) and E'(x) have at most k zeros each.

Can cross divide at *n* points.

$$\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$$
 equal on *n* points.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1 and agree on n+2k points

E(x) and E'(x) have at most k zeros each.

Can cross divide at *n* points.

 $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on *n* points.

Both degree $\leq n$

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1 and agree on n+2k points

E(x) and E'(x) have at most k zeros each.

Can cross divide at *n* points.

 $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on *n* points.

Both degree $\leq n \implies$ Same polynomial!

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1 and agree on n+2k points

E(x) and E'(x) have at most k zeros each.

Can cross divide at *n* points.

 $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on *n* points.

Both degree $\leq n \implies$ Same polynomial!

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof:

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0.

 $\implies Q(i)E'(i)=Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0.

$$\implies Q(i)E'(i)=Q'(i)E(i)$$
 holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0.

 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0.

$$\implies Q(i)E'(i) = Q'(i)E(i)$$
 holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with $\frac{x-2}{x-2}$ at x=2.

Yaay!!

Berlekamp-Welsh algorithm decodes correctly when k errors!

Communicate *n* packets, with *k* erasures.

Communicate *n* packets, with *k* erasures. How many packets?

Communicate n packets, with k erasures.

How many packets? n+k

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x).

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets?

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k Why?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kWhy? k changes to make diff. messages overlap

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kWhy? k changes to make diff. messages overlap How to encode?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k Why?

k changes to make diff. messages overlap How to encode? With polynomial, P(x).

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kWhy?

k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kWhy? k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1.

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k Why? k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k Why? k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

Why?

k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(X), and P(x)!

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k Why? k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover? Reconstruct error polynomial, E(X), and P(x)! Nonlinear equations.

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

Why?

k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x).

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

Why?

k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division!

Communicate *n* packets, with *k* erasures. How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points! Communicate *n* packets, with *k* errors. How many packets? n+2kWhy? k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover? Reconstruct error polynomial, E(X), and P(x)! Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

```
Communicate n packets, with k erasures.
 How many packets? n+k
 How to encode? With polynomial, P(x).
 Of degree? n-1
 Recover? Reconstruct P(x) with any n points!
Communicate n packets, with k errors.
 How many packets? n+2k
 Whv?
   k changes to make diff. messages overlap
 How to encode? With polynomial, P(x). Of degree? n-1.
 Recover?
 Reconstruct error polynomial, E(X), and P(x)!
   Nonlinear equations.
 Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
 Polynomial division! P(x) = Q(x)/E(x)!
```

Communicate *n* packets, with *k* erasures. How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points! Communicate *n* packets, with *k* errors. How many packets? n+2kWhv? k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover? Reconstruct error polynomial, E(X), and P(x)! Nonlinear equations. Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!Reed-Solomon codes.

Communicate *n* packets, with *k* erasures. How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points! Communicate *n* packets, with *k* errors. How many packets? n+2kWhv? k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover? Reconstruct error polynomial, E(X), and P(x)! Nonlinear equations. Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding.

Communicate *n* packets, with *k* erasures. How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points! Communicate *n* packets, with *k* errors. How many packets? n+2kWhv? k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover? Reconstruct error polynomial, E(X), and P(x)! Nonlinear equations. Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Polynomial division! P(x) = Q(x)/E(x)!

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Recover from Corruptions:

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Recover from Corruptions:

Send more information:

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Recover from Corruptions:

Send more information: n+2k

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k. Secret Sharing: n pieces, any k recovers.

Recover from Corruptions:

Send more information: n+2k k errors, n+k are correct

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Recover from Corruptions:

Send more information: n+2k

k errors, n+k are correct

 \implies and only one degree n-1 polynomial consistent.

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Recover from Corruptions:

Send more information: n+2k

k errors, n+k are correct

 \implies and only one degree n-1 polynomial consistent.

(Use pigeonhole principle.)

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Recover from Corruptions:

Send more information: n+2k

k errors, n+k are correct

 \implies and only one degree n-1 polynomial consistent.

(Use pigeonhole principle.)

Efficiency:

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Recover from Corruptions:

Send more information: n+2k

k errors, n+k are correct

 \implies and only one degree n-1 polynomial consistent. (Use pigeonhole principle.)

Efficiency:

Can fix k bad equations by multiplying by error polynomial of degree k.

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Recover from Corruptions:

Send more information: n+2k

k errors, n+k are correct

 \implies and only one degree n-1 polynomial consistent.

(Use pigeonhole principle.)

Efficiency:

Can fix k bad equations by multiplying by error polynomial of degree k.

A polynomial times a polynomial is a polynomial!

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Recover from Corruptions:

Send more information: n+2k

k errors, n+k are correct

 \implies and only one degree n-1 polynomial consistent.

(Use pigeonhole principle.)

Efficiency:

Can fix *k* bad equations by multiplying by error polynomial of degree *k*.

A polynomial times a polynomial is a polynomial! n+2k coefficients in all, n+2k correct equations.

Any d+1 points correspond to one polynomial of degree $\leq d$.

Any d+1 points give you back the polynomial.

Can give out n >> d+1 points, and any d+1 gives full information.

Recover Information:

Erasure tolerance n+k, can lose any k.

Secret Sharing: *n* pieces, any *k* recovers.

Recover from Corruptions:

Send more information: n+2k

k errors, n+k are correct

 \implies and only one degree n-1 polynomial consistent.

(Use pigeonhole principle.)

Efficiency:

Can fix *k* bad equations by multiplying by error polynomial of degree *k*.

A polynomial times a polynomial is a polynomial! n+2k coefficients in all, n+2k correct equations.