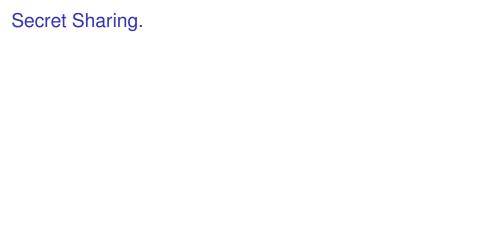


Today.

Polynomials.

Today.

Polynomials.


Secret Sharing.

Today.

Polynomials.

Secret Sharing.

Correcting for loss or even corruption.

Share secret among \boldsymbol{n} people.

Share secret among n people.

Secrecy: Any k-1 knows nothing.

Share secret among n people.

Secrecy: Any k-1 knows nothing. **Roubustness:** Any k knows secret.

Share secret among n people.

Secrecy: Any k-1 knows nothing. **Roubustness:** Any k knows secret.

Efficient: minimize storage.

Share secret among n people.

Secrecy: Any k-1 knows nothing. **Roubustness:** Any k knows secret.

Efficient: minimize storage.

Share secret among *n* people.

Secrecy: Any k-1 knows nothing. **Roubustness:** Any k knows secret.

Efficient: minimize storage.

The idea of the day.

Share secret among *n* people.

Secrecy: Any k-1 knows nothing. **Roubustness:** Any k knows secret.

Efficient: minimize storage.

The idea of the day.

Share secret among n people.

Secrecy: Any k-1 knows nothing. **Roubustness:** Any k knows secret.

Efficient: minimize storage.

The idea of the day.

Two points make a line.

Share secret among n people.

Secrecy: Any k-1 knows nothing. **Roubustness:** Any k knows secret.

Efficient: minimize storage.

The idea of the day.

Two points make a line. Lots of lines go through one point.

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \dots a_0$.

¹A field is a set of elements with addition and multiplication operations, with inverses. $GF(p) = (\{0, ..., p-1\}, + \pmod{p}, * \pmod{p}).$

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \dots a_0$.

P(x) contains point (a,b) if b = P(a).

¹A field is a set of elements with addition and multiplication operations, with inverses. $GF(p) = (\{0,...,p-1\}, + \pmod{p}, * \pmod{p}).$

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \dots a_0$.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: $a_1, \ldots, a_d \in \Re$, use $x \in \Re$.

 $^{^1}$ A field is a set of elements with addition and multiplication operations, with inverses. $GF(p) = (\{0, \dots, p-1\}, + \pmod{p}, * \pmod{p}).$

A polynomial

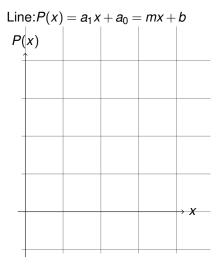
$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

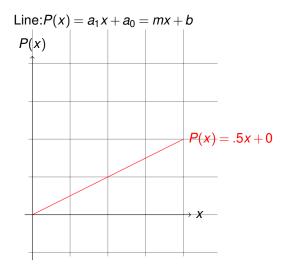
is specified by **coefficients** $a_d, \dots a_0$.

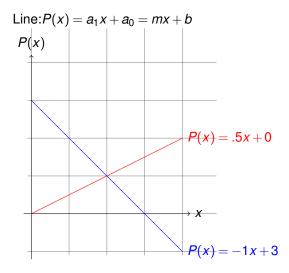
P(x) contains point (a,b) if b = P(a).

Polynomials over reals: $a_1, ..., a_d \in \Re$, use $x \in \Re$.

Polynomials P(x) with arithmetic modulo p: ¹ $a_i \in \{0, ..., p-1\}$ and


$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0 \pmod{p},$$


for $x \in \{0, ..., p-1\}$.


¹ A field is a set of elements with addition and multiplication operations, with inverses. $GF(p) = (\{0, ..., p-1\}, + \pmod{p}, * \pmod{p}).$

Line:
$$P(x) = a_1 x + a_0$$

Line:
$$P(x) = a_1 x + a_0 = mx + b$$

Line:
$$P(x) = a_1x + a_0 = mx + b$$

$$P(x)$$

Parabola: $P(x) = a_2x^2 + a_1x + a_0$

Line:
$$P(x) = a_1x + a_0 = mx + b$$

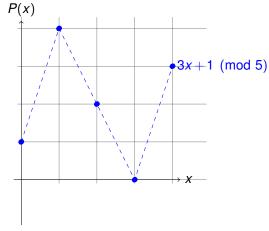
$$P(x)$$

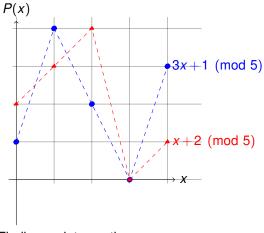
Parabola: $P(x) = a_2x^2 + a_1x + a_0 = ax^2 + bx + c$

Line:
$$P(x) = a_1 x + a_0 = mx + b$$

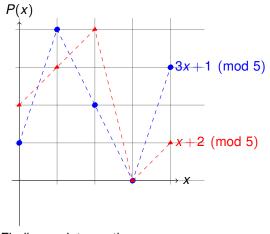
$$P(x) = 0.5x^2 - x + 0.1$$

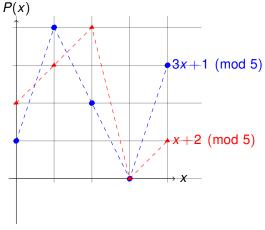

Parabola: $P(x) = a_2x^2 + a_1x + a_0 = ax^2 + bx + c$


Line:
$$P(x) = a_1x + a_0 = mx + b$$


$$P(x) = 0.5x^2 - x + 0.1$$

$$P(x) = -.3x^2 + 1x + .1$$


Parabola: $P(x) = a_2x^2 + a_1x + a_0 = ax^2 + bx + c$



Finding an intersection. $x+2 \equiv 3x+1 \pmod{5}$

Finding an intersection.

$$x+2 \equiv 3x+1 \pmod{5}$$

 $\implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5}$

Finding an intersection.

$$x+2 \equiv 3x+1 \pmod{5}$$

 $\implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5}$
3 is multiplicative inverse of 2 modulo 5.

Finding an intersection. $x+2 \equiv 3x+1 \pmod{5}$ $\implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5}$ 3 is multiplicative inverse of 2 modulo 5. Good when modulus is prime!!

Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ²

²Points with different *x* values.

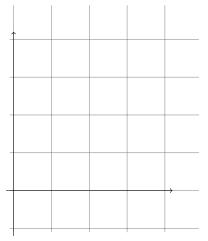
Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ² Two points specify a line.

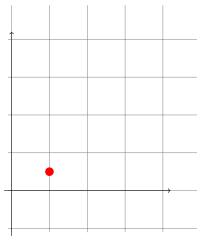
²Points with different *x* values.

Two points make a line.

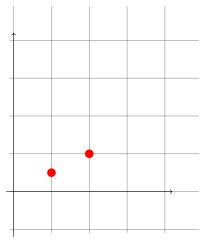
Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ² Two points specify a line. Three points specify a parabola.

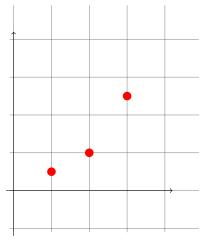

²Points with different *x* values.

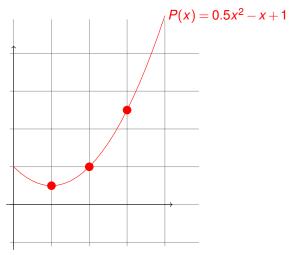
Two points make a line.

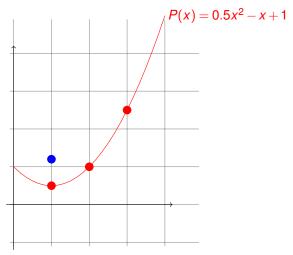

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ² Two points specify a line. Three points specify a parabola.

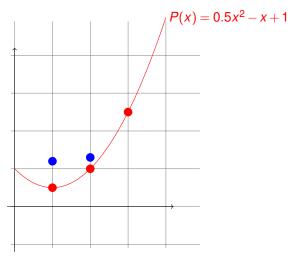
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

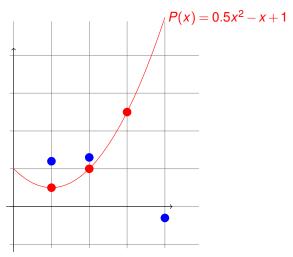

²Points with different x values.

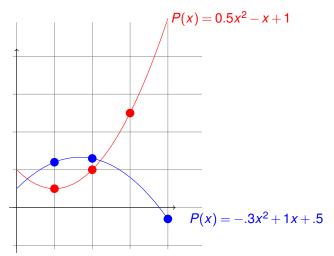

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³


Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³

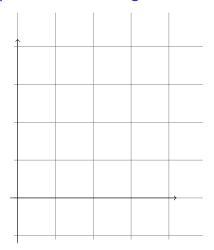

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³

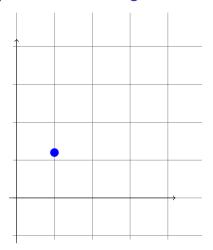

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³

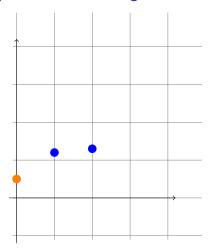

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³


Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³

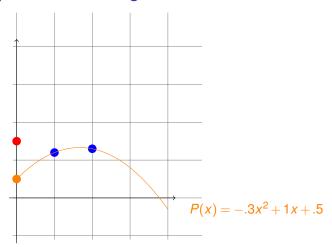
Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³

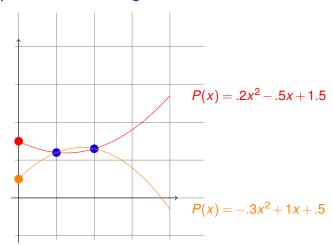


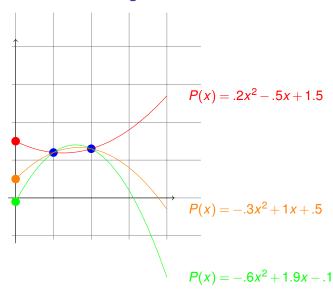

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³

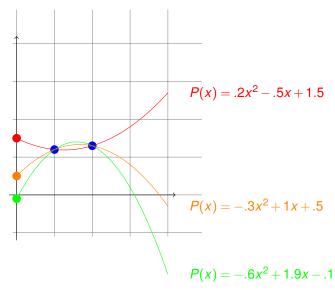

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³


³Points with different x values.









Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's *k* out of *n* Scheme:

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's *k* out of *n* Scheme:

Secret $s \in \{0, ..., p-1\}$

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Knowing *k* pts

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Knowing k pts \Longrightarrow only one P(x)

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \dots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Knowing k pts \implies only one P(x) \implies evaluate P(0).

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Knowing k pts \implies only one P(x) \implies evaluate P(0).

Secrecy: Any k-1 shares give nothing.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Knowing k pts \implies only one P(x) \implies evaluate P(0).

Secrecy: Any k-1 shares give nothing.

Knowing $\leq k-1$ pts

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Knowing k pts \implies only one P(x) \implies evaluate P(0).

Secrecy: Any k-1 shares give nothing.

Knowing $\leq k-1$ pts \implies any P(0) is possible.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Knowing k pts \implies only one P(x) \implies evaluate P(0).

Secrecy: Any k-1 shares give nothing.

Knowing $\leq k-1$ pts \implies any P(0) is possible.

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4). P(1) =

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b$$

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4). $P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$.

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

And the line is...

$$x+2 \mod 5$$
.

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $3a_1 + 2a_0 \equiv 1 \pmod{5}$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $a_3 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $3a_1 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $3a_1 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$ Add first and third.

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $a_3 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.
 $a_4 + 2a_0 \equiv 2 \pmod{5}$ Add first and third.

Subtracting 2nd from 3rd yields: $a_1 = 1$.

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $3a_1 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$ Add first and third.

Subtracting 2nd from 3rd yields: $a_1 = 1$.

$$a_0 = (2 - 4(a_1))2^{-1}$$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $3a_1 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$ Add first and third.

Subtracting 2nd from 3rd yields: $a_1 = 1$.

$$a_0 = (2-4(a_1))2^{-1} = (-2)(2^{-1})$$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $3a_1 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$ Add first and third.

Subtracting 2nd from 3rd yields:
$$a_1 = 1$$
.
 $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3)$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $3a_1 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$ Add first and third.

Subtracting 2nd from 3rd yields:
$$a_1 = 1$$
.
 $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $3a_1 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$ Add first and third.

Subtracting 2nd from 3rd yields:
$$a_1 = 1$$
. $a_0 = (2-4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$ $a_2 = 2-1-4 \equiv 2 \pmod{5}$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $3a_1 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$ Add first and third.

Subtracting 2nd from 3rd yields:
$$a_1=1$$
. $a_0=(2-4(a_1))2^{-1}=(-2)(2^{-1})=(3)(3)=9\equiv 4\pmod 5$ $a_2=2-1-4\equiv 2\pmod 5$.

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$
 $P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$
 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$
 $3a_1 + 2a_0 \equiv 1 \pmod{5}$ Add first and second.
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$ Add first and third.

Subtracting 2nd from 3rd yields:
$$a_1 = 1$$
. $a_0 = (2-4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$ $a_2 = 2-1-4 \equiv 2 \pmod{5}$.

So polynomial is $2x^2 + 1x + 4 \pmod{5}$

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Solve...

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Solve...

Will this always work?

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k).$

Solve...

Will this always work?

As long as solution exists and it is unique! And...

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k).$

Solve...

Will this always work?

As long as solution exists and it is unique! And...

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

Solve...

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0). Try $(x-2)(x-3) \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$
 contains $(1,1)$; $(2,0)$; $(3,0)$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$
 contains $(1,1)$; $(2,0)$; $(3,0)$.

$$\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$$
 contains $(1,0)$; $(2,1)$; $(3,0)$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$
 contains $(1,1)$; $(2,0)$; $(3,0)$.

$$\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$$
 contains $(1,0)$; $(2,1)$; $(3,0)$.

$$\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$$
 contains $(1,0)$; $(2,0)$; $(3,1)$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

 $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So "Divide by 2" or multiply by 3.

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$
 contains $(1,1)$; $(2,0)$; $(3,0)$.

$$\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$$
 contains $(1,0)$; $(2,1)$; $(3,0)$.

$$\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$$
 contains $(1,0)$; $(2,0)$; $(3,1)$.

But wanted to hit (1,3); (2,4); (3,0)!

$$P(x) = 2\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So "Divide by 2" or multiply by 3.

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$
 contains $(1,1)$; $(2,0)$; $(3,0)$.

$$\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$$
 contains $(1,0)$; $(2,1)$; $(3,0)$.

$$\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$$
 contains $(1,0)$; $(2,0)$; $(3,1)$.

But wanted to hit (1,3); (2,4); (3,0)!

$$P(x) = 2\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

Same as before?

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So "Divide by 2" or multiply by 3.

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$
 contains $(1,1)$; $(2,0)$; $(3,0)$.

$$\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$$
 contains $(1,0)$; $(2,1)$; $(3,0)$.

$$\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$$
 contains $(1,0)$; $(2,0)$; $(3,1)$.

But wanted to hit (1,3); (2,4); (3,0)!

$$P(x) = 2\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

Same as before?

...after a lot of calculations...

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So "Divide by 2" or multiply by 3.

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$
 contains $(1,1)$; $(2,0)$; $(3,0)$.

$$\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$$
 contains $(1,0)$; $(2,1)$; $(3,0)$.

$$\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$$
 contains $(1,0)$; $(2,0)$; $(3,1)$.

But wanted to hit (1,3); (2,4); (3,0)!

$$P(x) = 2\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \mod 5$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So "Divide by 2" or multiply by 3.

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$
 contains $(1,1)$; $(2,0)$; $(3,0)$.

$$\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$$
 contains $(1,0)$; $(2,1)$; $(3,0)$.

$$\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$$
 contains $(1,0)$; $(2,0)$; $(3,1)$.

But wanted to hit (1,3); (2,4); (3,0)!

$$P(x) = 2\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \mod 5$.

The same as before!

Flowers and grass, oh so nice.

Flowers and grass, oh so nice.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

Flowers and grass, oh so nice.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

E.g., Reals, rationals, complex numbers.

Flowers and grass, oh so nice.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

E.g., Reals, rationals, complex numbers. Not E.g., the integers, matrices.

Flowers and grass, oh so nice.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

E.g., Reals, rationals, complex numbers. Not E.g., the integers, matrices.

Flowers and grass, oh so nice.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

E.g., Reals, rationals, complex numbers.

Not E.g., the integers, matrices.

Work with polynomials in arithmetic modulo p.

Flowers and grass, oh so nice.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

E.g., Reals, rationals, complex numbers.

Not E.g., the integers, matrices.

Work with polynomials in arithmetic modulo p.

Addition is cool.

Flowers and grass, oh so nice.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

E.g., Reals, rationals, complex numbers.

Not E.g., the integers, matrices.

Work with polynomials in arithmetic modulo p.

Addition is cool. Inherited from integers and integer division (remainders).

Flowers and grass, oh so nice.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

E.g., Reals, rationals, complex numbers.

Not E.g., the integers, matrices.

Work with polynomials in arithmetic modulo p.

Addition is cool. Inherited from integers and integer division (remainders).

Multiplicative inverses due to gcd(x,p) = 1, for all $x \in \{1,...,p-1\}$

For set of *x*-values, x_1, \ldots, x_{d+1} .

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \end{cases}$$

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_{i}(x) = \begin{cases} 1, & \text{if } x = x_{i}. \\ 0, & \text{if } x = x_{j} \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2,y_2) ?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2,y_2) ?

Does $y_1\Delta_1(x) + y_2\Delta_2(x)$ contain

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$

Will $y_1\Delta_1(x)$ contain (x_1,y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2,y_2) ?

Does $y_1\Delta_1(x) + y_2\Delta_2(x)$ contain (x_1, y_1) ?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2,y_2) ?

Does $y_1\Delta_1(x) + y_2\Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2,y_2) ?

Does $y_1\Delta_1(x) + y_2\Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

See the idea?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2,y_2) ?

Does $y_1\Delta_1(x) + y_2\Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

See the idea? Function that contains all points?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2,y_2) ?

Does $y_1\Delta_1(x) + y_2\Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

See the idea? Function that contains all points?

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x)$$

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2,y_2) ?

Does $y_1\Delta_1(x) + y_2\Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

See the idea? Function that contains all points?

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) \dots + y_{d+1} \Delta_{d+1}(x).$$

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}$$

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_j \neq x_i$.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_{i}(x) = \frac{\prod_{j \neq i} (x - x_{j})}{\prod_{j \neq i} (x_{i} - x_{j})} = \prod_{j \neq i} (x - x_{j}) \prod_{j \neq i} (x_{i} - x_{j})^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

"Denominator" makes it 1 at x_i .

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

"Denominator" makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).$$

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

"Denominator" makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).$$

hits points (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

"Denominator" makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).$$

hits points (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$. Degree d polynomial!

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

"Denominator" makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).$$

hits points (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$. Degree d polynomial!

Construction proves the existence of a polynomial!

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.$$

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2} = 2(x-3)$$

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2} = 2(x-3) = 2x-6$$

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0). Work modulo 5.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

$$\Delta_1(x)$$
 contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)}$$

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2}$$

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = (2)^{-1}(x-2)(x-3)$$

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = (2)^{-1}(x-2)(x-3) = 3(x-2)(x-3)$$

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = (2)^{-1}(x-2)(x-3) = 3(x-2)(x-3)$$
$$= 3x^2 + 3 \pmod{5}$$

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = (2)^{-1}(x-2)(x-3) = 3(x-2)(x-3)$$
$$= 3x^2 + 3 \pmod{5}$$

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x-6 = 2x+4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = (2)^{-1}(x-2)(x-3) = 3(x-2)(x-3)$$
$$= 3x^2 + 3 \pmod{5}$$

Put the delta functions together.

In general.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

In general.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}$$

In general.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{i \neq j} (x - x_j) \prod_{i \neq j} (x_i - x_j)^{-1}$$

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_j \neq x_i$.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_j \neq x_i$.

Denominator makes it 1 at x_i .

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_{i}(x) = \frac{\prod_{j \neq i} (x - x_{j})}{\prod_{j \neq i} (x_{i} - x_{j})} = \prod_{j \neq i} (x - x_{j}) \prod_{j \neq i} (x_{i} - x_{j})^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).$$

hits points (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).$$

hits points (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Construction proves the existence of the polynomial!

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

A line, a degree 1 polynomial, can intersect y = 0 at most one time

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

A line, a degree 1 polynomial, can intersect y = 0 at most one time or be y = 0.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

A line, a degree 1 polynomial, can intersect y = 0 at most one time or be y = 0.

A parabola (degree 2), can intersect y = 0 at most twice

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

A line, a degree 1 polynomial, can intersect y = 0 at most one time or be y = 0.

A parabola (degree 2), can intersect y = 0 at most twice or be y = 0.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

A line, a degree 1 polynomial, can intersect y = 0 at most one time or be y = 0.

A parabola (degree 2), can intersect y = 0 at most twice or be y = 0.

Proof:

Assume two different polynomials Q(x) and P(x) hit the points.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

A line, a degree 1 polynomial, can intersect y = 0 at most one time or be y = 0.

A parabola (degree 2), can intersect y = 0 at most twice or be y = 0.

Proof:

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

A line, a degree 1 polynomial, can intersect y = 0 at most one time or be y = 0.

A parabola (degree 2), can intersect y = 0 at most twice or be y = 0.

Proof:

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

A line, a degree 1 polynomial, can intersect y = 0 at most one time or be y = 0.

A parabola (degree 2), can intersect y = 0 at most twice or be y = 0.

Proof:

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

A line, a degree 1 polynomial, can intersect y = 0 at most one time or be y = 0.

A parabola (degree 2), can intersect y = 0 at most twice or be y = 0.

Proof:

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Must prove Roots fact.

$$4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$$

$$4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$$

In general, divide $P(x)$ by $(x - a)$ gives $Q(x)$ and remainder r .

$$4x^2-3x+2\equiv (x-3)(4x+4)+4\pmod 5$$

In general, divide $P(x)$ by $(x-a)$ gives $Q(x)$ and remainder r .
That is, $P(x)=(x-a)Q(x)+r$

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

P(x)=(x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r.

Plugin a: P(a) = r.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r.

Plugin a: P(a) = r.

It is a root if and only if r = 0.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

$$P(x) = (x - a)Q(x).$$

Proof:
$$P(x) = (x - a)Q(x) + r$$
.

Plugin a: P(a) = r.

It is a root if and only if r = 0.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

$$P(x)=(x-a)Q(x).$$

Proof: P(x) = (x - a)Q(x) + r.

Plugin a: P(a) = r.

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

$$P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d).$$

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r.

Plugin a: P(a) = r.

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

 $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d).$

Proof Sketch: By induction.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

$$P(x) = (x - a)Q(x).$$

Proof:
$$P(x) = (x - a)Q(x) + r$$
.

Plugin a: P(a) = r.

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

$$P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d).$$

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller degree so use the induction hypothesis.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

$$P(x) = (x - a)Q(x).$$

Proof:
$$P(x) = (x - a)Q(x) + r$$
.

Plugin a:
$$P(a) = r$$
.

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

$$P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d).$$

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller degree so use the induction hypothesis.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

$$P(x) = (x - a)Q(x).$$

Proof:
$$P(x) = (x - a)Q(x) + r$$
.

Plugin a:
$$P(a) = r$$
.

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

$$P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d).$$

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller degree so use the induction hypothesis.

d+1 roots implies degree is at least d+1.

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

$$P(x) = (x - a)Q(x).$$

Proof:
$$P(x) = (x - a)Q(x) + r$$
.

Plugin a:
$$P(a) = r$$
.

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

$$P(x) = c(x-r_1)(x-r_2)\cdots(x-r_d).$$

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller degree so use the induction hypothesis.

d+1 roots implies degree is at least d+1.

Roots fact: Any degree *d* polynomial has at most *d* roots.

Proof works for reals, rationals, and complex numbers.

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a **finite field** denoted by F_m or GF(m).

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a **finite field** denoted by F_m or GF(m).

Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's *k* out of *n* Scheme:

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any *k* knows secret.

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any *k* knows secret.

Knowing k pts, only one P(x), evaluate P(0).

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any *k* knows secret.

Knowing k pts, only one P(x), evaluate P(0).

Secrecy: Any k-1 knows nothing.

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any *k* knows secret.

Knowing k pts, only one P(x), evaluate P(0).

Secrecy: Any k-1 knows nothing.

Knowing $\leq k-1$ pts, any P(0) is possible.

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any *k* knows secret.

Knowing k pts, only one P(x), evaluate P(0).

Secrecy: Any k-1 knows nothing.

Knowing $\leq k-1$ pts, any P(0) is possible.

Need p > n to hand out n shares: $P(1) \dots P(n)$.

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*. Chebyshev said it,

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*. Chebyshev said it,

And I say it again,

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and 2n.

Chebyshev said it, And I say it again,

There is always a prime

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and 2n.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Working over numbers within 1 bit of secret size.

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and 2n.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Working over numbers within 1 bit of secret size. **Essentially Optimal.**

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and 2n.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Working over numbers within 1 bit of secret size. **Essentially Optimal.**

With k shares, reconstruct polynomial, P(x).

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and 2n.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Working over numbers within 1 bit of secret size. **Essentially Optimal.**

With k shares, reconstruct polynomial, P(x).

With k-1 shares, any of p values possible for P(0)!

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and 2n.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Working over numbers within 1 bit of secret size. **Essentially Optimal.**

With k shares, reconstruct polynomial, P(x).

With k-1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and 2n.

Chebyshev said it, And I say it again, There is always a prime

Between n and 2n.

Working over numbers within 1 bit of secret size. **Essentially Optimal.**

With k shares, reconstruct polynomial, P(x).

With k-1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Runtime.

Runtime: polynomial in k, n, and log p.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree k-1 polynomial n times using $\log p$ -bit numbers.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

- 1. Evaluate degree k-1 polynomial n times using $\log p$ -bit numbers.
- 2. Reconstruct secret by solving system of *k* equations using log *p*-bit arithmetic.