Today.

Polynomials.

Secret Sharing.

Correcting for loss or even corruption.

Polynomial: $P(x) = a_d x^4 + \cdots + a_0$

Line:
$$P(x) = a_1x + a_0 = mx + b$$

$$P(x)$$

$$P(x) = a_1x + a_0 = mx + b$$

Parabola: $P(x) = a_2x^2 + a_1x + a_0 = ax^2 + bx + c$

Secret Sharing.

Share secret among n people.

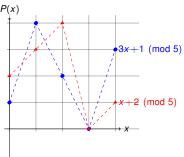
Secrecy: Any k-1 knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.

The idea of the day.

Two points make a line.

Lots of lines go through one point.

Polynomial: $P(x) = a_d x^4 + \cdots + a_0 \pmod{p}$



Finding an intersection. $x+2 \equiv 3x+1 \pmod{5}$

 $\implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5}$

3 is multiplicative inverse of 2 modulo 5. Good when modulus is prime!!

Polynomials

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \dots a_0$.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: $a_1, \ldots, a_d \in \Re$, use $x \in \Re$.

Polynomials P(x) with arithmetic modulo p: ¹ $a_i \in \{0, ..., p-1\}$ and

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0 \pmod{p},$$
 for $x \in \{0, \dots, p-1\}.$

Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ²

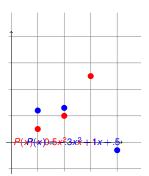
Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

 $^{^1}$ A field is a set of elements with addition and multiplication operations, with inverses. $GF(p) = (\{0, \dots, p-1\}, + \pmod{p}, * \pmod{p}).$

²Points with different *x* values.

3 points determine a parabola.



Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³

From d+1 points to degree d polynomial?

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

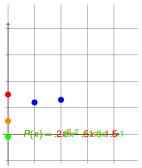
 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

And the line is...

$$x+2 \mod 5$$
.

2 points not enough.



There is P(x) contains blue points and any (0, y)!

So polynomial is $2x^2 + 1x + 4 \pmod{5}$

Quadratic

For a quadratic polynomial, $a_2x^2+a_1x+a_0$ hits (1,2);(2,4);(3,0). Plug in points to find equations.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret *s* ∈ $\{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Knowing k pts \Longrightarrow only one P(x) \Longrightarrow evaluate P(0).

Secrecy: Any k-1 shares give nothing.

Knowing $\leq k-1$ pts \implies any P(0) is possible.

In general..

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Solve...

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

³Points with different *x* values.

Another Construction: Interpolation!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

 $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

 $P(x) = 2\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$ works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \mod 5$.

The same as before!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

"Denominator" makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).$$

hits points (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$. Degree d polynomial!

Construction proves the existence of a polynomial!

Fields...

Flowers and grass, oh so nice.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

E.g., Reals, rationals, complex numbers.

Not E.g., the integers, matrices.

Work with polynomials in arithmetic modulo p.

Addition is cool. Inherited from integers and integer division (remainders).

Multiplicative inverses due to gcd(x,p) = 1, for all $x \in \{1, ..., p-1\}$

Example.

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= $2(x-3) = 2x - 6 = 2x + 4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

$$\begin{array}{l} \Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = (2)^{-1}(x-2)(x-3) = 3(x-2)(x-3) \\ = 3x^2 + 3 \pmod{5} \end{array}$$

Put the delta functions together.

Delta Polynomials: Concept.

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_{i}(x) = \begin{cases} 1, & \text{if } x = x_{i}. \\ 0, & \text{if } x = x_{j} \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1)

Given d+1 points, use Δ_i functions to go through points?

 $(x_1,y_1),\ldots,(x_{d+1},y_{d+1}).$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2,y_2) ?

Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

See the idea? Function that contains all points?

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) \dots + y_{d+1} \Delta_{d+1}(x).$$

In general.

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{i \neq j} (x - x_j) \prod_{i \neq j} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i.

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).$$

hits points $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

Construction proves the existence of the polynomial!

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

A line, a degree 1 polynomial, can intersect y = 0 at most one time or be y = 0.

A parabola (degree 2), can intersect y = 0 at most twice or be y = 0.

Proof:

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Must prove Roots fact.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses...

.. and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a **finite field** denoted by F_m or GF(m).

Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Polynomial Division.

Divide $4x^2 - 3x + 2$ by (x - 3) modulo 5.

$$4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$$

In general, divide P(x) by (x - a) gives Q(x) and remainder r.

That is, P(x) = (x - a)Q(x) + r

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's *k* out of *n* Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any k knows secret.

Knowing k pts, only one P(x), evaluate P(0).

Secrecy: Any k-1 knows nothing.

Knowing $\leq k - 1$ pts, any P(0) is possible.

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

P(x) = (x - a)Q(x).

Proof: P(x) = (x - a)Q(x) + r.

Plugin a: P(a) = r.

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

 $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d).$

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller

degree so use the induction hypothesis. d+1 roots implies degree is at least d+1.

Roots fact: Any degree *d* polynomial has at most *d* roots.

Minimality.

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and 2n.

Chebyshev said it,

And I say it again,

There is always a prime

Between n and 2n.

Working over numbers within 1 bit of secret size.

Essentially Optimal.

With k shares, reconstruct polynomial, P(x).

With k-1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Runtime.

Runtime: polynomial in k, n, and $\log p$.

- 1. Evaluate degree k-1 polynomial n times using $\log p$ -bit numbers.
- 2. Reconstruct secret by solving system of k equations using $\log p$ -bit arithmetic.