70: Discrete Math and Probability Theory

Programming + Microprocessors \equiv Superpower!

What are your super powerful programs/processors doing?
Logic and Proofs!

Induction \equiv Recursion.

What can computers do?

Work with discrete objects.

Discrete Math \implies immense application.

Computers learn and interact with the world?

E.g. machine learning, data analysis, robotics, ...

Probability!

See note 1, for more discussion.

Babak Ayazifar

Call me "Babak".

(First vowel pronounced like "o" in Bob. Second syllable as in "back".)

Undergrad Caltech. Grad MIT.

Second time with CS70 Teaching! Welcome back!

Best contact: ayazifar@berkeley.edu

Does time in 517 Cory Hall. Make appointment before knocking.

Satish Rao

20th year at Berkeley.

PhD: Long time ago, far far away. Research: Theory (Algorithms)

Taught in CS: 70, 170, 174, 188, 270, 273, 294, 375, ...

Other: 1 College kid. One Cal Grad. And another College Grad.

Lecturing Style: I use slides for the last few years.

Why I use Slides and some Advice.

Lots of arguments are demonstrated well by examples or verbal explanations, but sometimes painful to write down, which works for me with slides.

- (1) Is there value for you to watch me write on screen or paper?
- (2) You have them!

Use the slides to guide you.

Handout Version: for getting landscape.

Slide Version: for detailed understanding.

Some Issues: possibly fast, follow versus slides, lack of some context versus blackboards.

It is easier to present more.

'More' is overview, connections, insights, some jokes (breaks), the details.

Risk: Students get frustrated at not understanding everything.

It is ok: many levels to grok. Lecture is one pass.

Admin

It's weekly. Read it!!!!

```
Course Webpage: <a href="http://www.eecs70.org/">http://www.eecs70.org/</a>
Explains policies, has office hours, homework, midterm dates, etc.
Two midterms, final.
midterm 1. Friday, February 22. 8-10 PM
midterm 2. Tuesday, April 2. 8-10 PM

Questions => piazza:
piazza.com/berkeley/spring2019/cs70

Weekly Post.
```

Announcements, logistics, critical advice.

Wason's experiment:1

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person's destination on one side, and mode of travel.
- Consider the theory: "If a person travels to Chicago, he/she flies."
- Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards must you flip to test the theory?

Answer: Later.

CS70: Lecture 1. Outline.

Today: Note 1. Note 0 is background. Do read it.

The language of proofs!

- 1. Propositions.
- 2. Propositional Forms.
- 3. Implication.
- 4. Truth Tables
- Quantifiers
- 6. More De Morgan's Laws

Propositions: Statements that are true or false.

$\sqrt{2}$ is irrational	Proposition	True
2+2 = 4	Proposition	True
2+2 = 3	Proposition	False
826th digit of pi is 4	Proposition	False
Johnny Depp is a good actor	Not Proposition	
Any even > 2 is sum of 2 primes	Proposition	False
4+5	Not Proposition.	
X + X	Not a Proposition.	
Alice travelled to Chicago	Proposition.	False
I love you.	Hmmm.	Its complicated?

Again: "value" of a proposition is ... True or False

Propositional Forms.

```
Put propositions together to make another...
Conjunction ("and"): P \wedge Q
   "P \wedge Q" is True when both P and Q are True. Else False.
Disjunction ("or"): P \vee Q
   "P \lor Q" is True when at least one P or Q is True. Else False.
Negation ("not"): \neg P
   "\neg P" is True when P is False. Else False.
Examples:
   \neg "(2+2=4)"

    a proposition that is ... False

"2+2=3" \wedge "2+2=4" – a proposition that is ... False
```

"2+2=3" \vee "2+2=4" – a proposition that is ... True

Propositional Forms: quick check!

```
P= "\sqrt{2} is rational"

Q= "826th digit of pi is 2"

P is ...False .

Q is ...True .

P \wedge Q ... False

P \vee Q ... True
```

¬*P* ... True

Put them together...

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

....

But we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 rides the bus or person 5 doesn't.

Propositional Form:

$$\neg(((P_1\vee P_2)\wedge(P_3\vee P_4))\vee((P_2\vee P_3)\wedge(P_4\vee\neg P_5)))$$

Can person 3 ride the bus?

Can person 3 and person 4 ride the bus together?

This seems ...complicated.

We can program!!!!

We need a way to keep track!

Truth Tables for Propositional Forms.

P	Q	$P \wedge Q$
T	Т	T
T	F	F
F	Т	F
F	F	F

P	Q	$P \lor Q$
T	Т	T
T	F	Т
F	Т	Т
F	F	F

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because both propositional forms have the same... Truth Table!

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
Т	F	F	F
F	Т	F	F
F	F	Т	Т

DeMorgan's Law's for Negation: distribute and flip!

$$\neg (P \land Q) \quad \equiv \quad \neg P \lor \neg Q \qquad \qquad \neg (P \lor Q) \quad \equiv \quad \neg P \land \neg Q$$

Quick Questions

<i>P</i>	Q	$ P \wedge Q $
Т	Т	T
T	F	F
F	Т	F
F	F	F

Р	Q	$P \lor Q$
Т	T	Τ
T	F	Т
F	Τ	Т
F	F	Т

Is $(T \wedge Q) \equiv Q$? Yes? No?

Yes! Look at rows in truth table for P = T.

What is $(F \wedge Q)$? F or False.

What is $(T \lor Q)$? T

What is $(F \lor Q)$? Q

Distributive?

```
P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)?
Simplify: (T \wedge Q) \equiv Q, (F \wedge Q) \equiv F.
  Cases:
     P is True.
        LHS: T \wedge (Q \vee R) \equiv (Q \vee R).
        RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).
     P is False.
        LHS: F \wedge (Q \vee R) \equiv F.
        RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.
P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)?
  Simplify: T \lor Q \equiv T, F \lor Q \equiv Q.
Foil 1:
    (A \lor B) \land (C \lor D) \equiv (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D)?
Foil 2:
    (A \land B) \lor (C \land D) \equiv (A \lor C) \land (A \lor D) \land (B \lor C) \land (B \lor D)?
```

Implication.

 $P \Longrightarrow Q$ interpreted as

If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Examples:

Statement: If you stand in the rain, then you'll get wet.

P = "you stand in the rain"

Q = "you will get wet"

Statement: "Stand in the rain"

Can conclude: "you'll get wet."

Statement:

If a right triangle has sidelengths $a \le b \le c$, then $a^2 + b^2 = c^2$.

P = "a right triangle has sidelengths $a \le b \le c$ ",

 $Q = a^2 + b^2 = c^2$.

Non-Consequences/consequences of Implication

The statement " $P \Longrightarrow Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

Be careful!

Instead we have:

 $P \Longrightarrow Q$ and P are True does mean Q is True.

The chemical plant pollutes river. Can we conclude fish die?

Some Fun: use propositional formulas to describe implication? $((P \Longrightarrow Q) \land P) \Longrightarrow Q$.

Implication and English.

 $P \Longrightarrow Q$

- ▶ If P, then Q.
- Q if P. Just reversing the order.
- P only if Q.
 Remember if P is true then Q must be true.
 this suggests that P can only be true if Q is true.
 since if Q is false P must have been false.
- P is sufficient for Q.
 This means that proving P allows you to conclude that Q is true.
 Example: Showing n > 4 is sufficient for showing n > 3.
- ▶ Q is necessary for P.
 For P to be true it is necessary that Q is true.
 Or if Q is false then we know that P is false.
 Example: It is necessary that n > 3 for n > 4.

Truth Table: implication.

P	Q	$P \Longrightarrow Q$
Т	Т	Т
T	F	F
F	Т	Т
F	F	Т

P	Q	$\neg P \lor Q$
Т	Т	Т
T	F	F
F	Т	T
F	F	T

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

These two propositional forms are logically equivalent!

Contrapositive, Converse

- ▶ Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

 $\label{eq:logically equivalent!} \mbox{Logically equivalent! Notation:} \equiv .$

$$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$$

- ▶ **Converse** of $P \implies Q$ is $Q \implies P$. If fish die the plant pollutes.
 - Not logically equivalent!
- ▶ **Definition:** If $P \implies Q$ and $Q \implies P$ is P if and only if Q or $P \iff Q$. (Logically Equivalent: \iff .)

Variables.

Propositions?

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

$$\rightarrow x > 2$$

n is even and the sum of two primes

No. They have a free variable.

We call them **predicates**, e.g., Q(x) = "x is even" Same as boolean valued functions from 61A!

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
."

►
$$R(x) = "x > 2"$$

•
$$G(n) =$$
 "n is even and the sum of two primes"

$$F(x) =$$
 "Person x flew."

$$C(x)$$
 = "Person x went to Chicago"

$$C(x) \Longrightarrow F(x)$$
. Theory from Wason's. If person x goes to Chicago then person x flew.

Next: Statements about boolean valued functions!!

Quantifiers...

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

"the square of a number is always non-negative"

$$(\forall x \in \mathbb{N})(x^2 >= 0)$$

Wait! What is N?

Quantifiers: universes.

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

Universe examples include..

- $ightharpoonup
 vert
 vert = \{0,1,\ldots\}$ (natural numbers).
- $ightharpoonup \mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers)
- ▶ Z⁺ (positive integers)
- ▶ ℝ (real numbers)
- ► Any set: *S* = {*Alice*, *Bob*, *Charlie*, *Donna*}.
- See note 0 for more!

Back to: Wason's experiment:1

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes. $P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$. So P(Bob) must be False.

$$P(C) = \text{True}$$
. Do we care about $Q(C)$?

Yes. $P(C) \Longrightarrow Q(C)$ means Q(C) must be true.

$$Q(D)$$
 = True . Do we care about $P(D)$?
No. $P(D) \Longrightarrow Q(D)$ holds whatever $P(D)$ is when $Q(D)$ is true.

Only have to turn over cards for Bob and Charlie.

More for all quantifiers examples.

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)(x > 5 \implies x^2 > 25).$$

Idea alert: Restrict domain using implication.

Later we may omit universe if clear from context.

Quantifiers..not commutative.

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

In English: "the square of every natural number is a natural number."

$$(\forall x \in N)(\exists y \in N) (y = x^2)$$
 True

Quantifiers....negation...DeMorgan again.

Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True: prove claim. Next lectures...

Negation of exists.

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that there is no $x \in S$ where P(x) is true. English: means that for all $x \in S$, P(x) does not hold.

That is,

$$\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$$

Which Theorem?

Theorem: $(\forall n \in \mathbb{N}) \neg (\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles: for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ...(based in part on Ribet's Theorem)

DeMorgan Restatement:

Theorem: $\neg(\exists n \in N) \ (\exists a,b,c \in N) \ (n \ge 3 \implies a^n + b^n = c^n)$

Summary.

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: "Flip and Distribute negation"

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$
$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$$

Next Time: proofs!