Main Idea: \(d+1\) points determine a polynomial.

Construct polynomial of degree \(k\), with \(P(0) = s\).

Tolerate packet drops. Erasure Codes.

Erasure Codes.

Problem: Want to send a message with \(n\) packets.

Channel: Lossy channel: loses \(k\) packets.

Question: Can you send \(n+k\) packets and recover message?

A degree \(n-1\) polynomial determined by any \(n\) points!

Erasure Coding Scheme: message = \(m_0, m_1, \ldots, m_{n-1}\).

1. Choose prime \(p \approx 2^b\) for packet size \(b\).
2. \(P(x) = m_0 + x^{d-1} + \cdots + m_0 \pmod{p}\).
3. Send \(P(1), \ldots, P(n+k)\).

Any \(n\) of the \(n+k\) packets gives polynomial ...and message!

The mathematics.

Exactly one polynomial of degree \(d\) contains any \(d+1\) points.

Assumption: a field, in particular, arithmetic \(\mod p\).

Big Idea:
A polynomial: \(P(x) = a_dx^d + \cdots + a_0\) has \(d+1\) coefficients.

Any set of \(d+1\) points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient representation.
Many, many point/value representations.

Some details:
Degree \(d\) generally degree “at most” \(d\).
(example: choose 10 points on a line.)
Arithmetic \((\mod p)\) \(\implies\) work with \(O(\log p)\) bit numbers.

Solution Idea.

\(n\) packet message, channel that loses \(k\) packets.
Must send \(n+k\) packets!

Any \(n\) packets should allow reconstruction of \(n\) packet message.
Any \(n\) point values allow reconstruction of degree \(n-1\) polynomial.

Seem related?
Use polynomials.

Big Idea View:
Any set of \(n\) points contain information about \(n\) coefficients.
or even any other set of \(n\) points!!!

“Information” about coefficients smeared across the \(n\) points.

Linear Algebra View:
Representing vector (message) in different basis.
Many bases!

The Scheme

Problem: Want to send a message with \(n\) packets.

Channel: Lossy channel: loses \(k\) packets.

Question: Can you send \(n+k\) packets and recover message?

A degree \(n-1\) polynomial determined by any \(n\) points!

Erasure Coding Scheme: message = \(m_0, m_1, \ldots, m_{n-1}\).

1. Choose prime \(p \approx 2^b\) for packet size \(b\).
2. \(P(x) = m_0 + x^{d-1} + \cdots + m_0 \pmod{p}\).
3. Send \(P(1), \ldots, P(n+k)\).

Any \(n\) of the \(n+k\) packets gives polynomial ...and message!
Polynomials.

- ...give Secret Sharing.
- ...give Erasure Codes.

Error Correction:
Noisy Channel: corrupts \(k \) packets. (rather than loses.)
Additional Challenge: Finding which packets are corrupt.

Properties: proof.

- \(P(x) \): degree \(n − 1 \) polynomial.
- Send \(P(1), \ldots, P(n + 2k) \)
- Receive \(R(1), \ldots, R(n + 2k) \)
- At most \(k \) \(i \)'s where \(P(i) \neq R(i) \).

Proof:
(1) Sure. Only \(k \) corruptions.
(2) Degree \(n − 1 \) polynomial \(Q(x) \) consistent with \(n + k \) points.
\(Q(i) \) agrees with \(R(i) \), \(n + k \) times.
\(P(x) \) agrees with \(R(i) \), \(n + k \) times.

\(P(x) \) and \(Q(x) \) have 3 points in common.

Example.
Message: 3,0,6.
Reed Solomon Code: \(P(x) = x^2 + x + 1 \) (mod 7) has
\(P(1) = 3, P(2) = 0, P(3) = 6 \) modulo 7.
Send: \(P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3 \).

(Aside: Message in plain text!)
Receive \(R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 \).
\(P(i) = R(i) \) for \(n + k = 3 + 1 = 4 \) points.

The Scheme.
Problem: Communicate \(n \) packets \(m_1, \ldots, m_n \)
on noisy channel that corrupts \(\leq k \) packets.

Reed-Solomon Code:
1. Make a polynomial, \(P(x) \) of degree \(n − 1 \),
that encodes message.
- \(P(1) = m_1, \ldots, P(n) = m_n \).
- Comment: could encode with packets as coefficients.
2. Send \(P(1), \ldots, P(n + 2k) \).

After noisy channel: Receive values \(R(1), \ldots, R(n + 2k) \).

Properties:
(1) \(P(i) = R(i) \) for at least \(n + k \) points \(i \),
(2) \(P(x) \) is unique degree \(n − 1 \) polynomial
that contains \(\geq n + k \) received points.

Error Correction

Satellite

Error Correction: 3 packet message. Send 5.

Corrupts 1 packets.

GPS device

Argument on example: \(n = 3, k = 1 \)

3 packet message.

Send \(n = 2k = 5 \) points on degree 3 polynomial \(P(x) \).
Recieve: \(R(1), R(2), R(3), R(4), R(5) \).
- Only one \(i \), where \(R(i) \neq P(i) \).
- \(P(x) \) contains 4 of the points \(R(1), \ldots, R(5) \).
- Another degree 3 polynomial, \(Q(x) \)
contains 4 of the points \(R(1), \ldots, R(5) \).
- \(P(x) \) and \(Q(x) \) have 3 points in common.
- Since: \(P(x) \) contains 4, \(Q(x) \) contains 4.
- There are only 5. So they agree on 8-5 = 3.

\[P(1) = R(1), P(2) = R(2), P(3) = R(3), P(4) = R(4), P(5) = R(5) \]

Degree 3 \(\implies P(x) = Q(x) \)
Slow solution.

Brute Force:

For each subset of \(n + k \) points
- Fit degree \(n - 1 \) polynomial, \(Q(x) \), to \(n \) of them.
- If yes, output \(Q(x) \).
 - For subset of \(n + k \) pts where \(R(i) = P(i) \), method will reconstruct \(P(x) \)!!
 - For any subset of \(n + k \) pts,
 1. unique degree \(n - 1 \) polynomial \(Q(x) \) that fits \(n \) of them
 2. and where \(Q(x) \) is consistent with \(n + k \) points
 \[P(x) = Q(x). \]
Reconstructs \(P(x) \) and only \(P(x) \)!!

Example.

Received \(R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 \)
Find \(P(x) = p_0 x^2 + p_1 x + p_2 \) that contains \(n + k = 3 + 1 \) points.
All equations..

\[
\begin{align*}
p_0 + p_1 + p_2 &= 3 \quad \text{(mod 7)} \\
4p_0 + 2p_1 + p_2 &= 1 \quad \text{(mod 7)} \\
2p_0 + 3p_1 + p_2 &= 6 \quad \text{(mod 7)} \\
2p_0 + 4p_1 + p_2 &= 0 \quad \text{(mod 7)} \\
4p_0 + 5p_1 + p_2 &= 3 \quad \text{(mod 7)}
\end{align*}
\]

Assume point 1 is wrong and solve...no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be?
With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone... wrong?
Oh where, oh where do they not fit.
With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

In general.

\[
P(x) = p_{n-1} x^{n-1} + \cdots + p_0 \quad \text{and receive } R(1), \ldots, R(m = n + 2k).\]

\[
\begin{align*}
p_{n-1} + \cdots + p_0 &= R(1) \quad \text{(mod p)} \\
p_{n-1} x^{n-1} + \cdots + p_0 &= R(2) \quad \text{(mod p)} \\
&\vdots \\
p_{n-1} x^{n-1} + \cdots + p_0 &= R(m) \quad \text{(mod p)}
\end{align*}
\]

Error! ... Where???
Could be anywhere!!! ...so try everywhere.
Runtime: \(\binom{n + k}{k} \) possibilities.
Something like \((n/k)^k \) ...Exponential in \(k \)!
How do we find where the bad packets are efficiently?!?!?!

Example.

Received \(R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 \)
Find \(P(x) = p_0 x^2 + p_1 x + p_0 \) that contains \(n + k = 3 + 1 \) points.

Plugin points...

\[
\begin{align*}
(1 - \delta)(p_0 + p_1 + p_2) &= 3(1 - \delta) \quad \text{(mod 7)} \\
(2 - \delta)(4p_0 + 2p_1 + p_2) &= (1)(2 - \delta) \quad \text{(mod 7)} \\
(3 - \delta)(2p_0 + 3p_1 + p_2) &= (0)(3 - \delta) \quad \text{(mod 7)} \\
(4 - \delta)(2p_0 + 4p_1 + p_2) &= (0)(4 - \delta) \quad \text{(mod 7)} \\
(5 - \delta)(4p_0 + 5p_1 + p_2) &= (3)(5 - \delta) \quad \text{(mod 7)}
\end{align*}
\]

Error locator polynomial: \((x - 2) \).
Multiply equation \(i \) by \(i - 2 \). All equations satisfied!
But don't know error locator polynomial! Do know form: \((x - e) \).
4 unknowns \((p_0, p_1, p_2 \text{ and } e) \), 5 nonlinear equations.

..turn their heads each day,

\[
E(1)(p_{n-1} + \cdots + p_0) \equiv R(1)E(1) \pmod{p} \\
\vdots \\
E(i)(p_{n-1}^{i-1} + \cdots + p_0) \equiv R(i)E(i) \pmod{p} \\
\vdots \\
E(m)(p_{n-1}^{m} + \cdots + p_0) \equiv R(m)E(m) \pmod{p}
\]

...so satisfied, I'm on my way.

\[m = n + 2k\] satisfied equations, \(n + k\) unknowns. But nonlinear!

Let \(Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0\).

Equations:

\[Q(i) = R(i)E(i).\]

and linear in \(a_i\) and coefficients of \(E(x)\)!

Example.

Received \(R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3\)

\[Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0\]

\[E(x) = x - b_0\]

\[Q(i) = R(i)E(i).\]

\[
\begin{align*}
 a_3 + a_2 + a_1 + a_0 &= 3(1 - b_0) \pmod{7} \\
 a_3 + 4a_2 + 2a_1 + a_0 &= 1(2 - b_0) \pmod{7} \\
 6a_3 + 2a_2 + 3a_1 + a_0 &= 6(3 - b_0) \pmod{7} \\
 a_3 + 2a_2 + 4a_1 + a_0 &= 0(4 - b_0) \pmod{7} \\
 6a_3 + 4a_2 + 5a_1 + a_0 &= 3(5 - b_0) \pmod{7}
\end{align*}
\]

\[a_3 = 1, a_2 = 6, a_1 = 6, a_0 = 5\] and \(b_0 = 2\).

\[Q(x) = x^3 + 6x^2 + 6x + 5, \quad E(x) = x + 2.\]

Finding \(Q(x)\) and \(E(x)\)?

- \(E(x)\) has degree \(k\) ...

\[E(x) = x^k + b_{k-1}x^{k-1} + \cdots + b_0.\]

\[\Rightarrow k \text{ (unknown) coefficients. Leading coefficient is } 1.\]

- \(Q(x) = P(x)E(x)\) has degree \(n + k - 1\) ...

\[Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0\]

\[\Rightarrow n + k \text{ (unknown) coefficients.}\]

Number of unknown coefficients: \(n + 2k\).

Example: finishing up.

\[Q(x) = x^3 + 6x^2 + 6x + 5, \quad E(x) = x^2 + 1 + x + 1 \]

\[\frac{1}{x^2 + 1 + x + 1} \]

\[x - 2 \mid x^3 + 6x^2 + 6x + 5\]

\[x^3 - 2x^2 \]

\[1x^2 + 6x + 5\]

\[1x^2 - 2x \]

\[\frac{1}{x^2 - 2x} \cdot x + 5\]

\[x - 2 \]

\[P(x) = x^2 + x + 1\]

Message is \(P(1) = 3, P(2) = 0, P(3) = 6\).

What is \(\frac{P(2)}{P(3)}\)? 1

Except at \(x = 2\)? Hole there?

Solving for \(Q(x)\) and \(E(x)\)...and \(P(x)\)

For all points \(1, \ldots, i, n + 2k = m,\)

\[Q(i) = R(i)E(i) \pmod{p}\]

Gives \(n + 2k\) linear equations.

\[
\begin{align*}
 a_nk &- 1 + \cdots + a_0 &= R(1)(1 + b_{n-1} \cdots b_0) \pmod{p} \\
 a_{n-1}(2)^{n-1} \cdots + a_0 &= R(2)((2)^k + b_{n-2}(2)^{k-1} \cdots b_0) \pmod{p} \\
 \vdots \\
 a_{n+k-1}(m)^{n+k-1} \cdots + a_0 &= R(m)((m)^k + b_{n+k-2}(m)^{k-1} \cdots b_0) \pmod{p}
\end{align*}
\]

\[\ldots \text{and } n + 2k \text{ unknown coefficients of } Q(x) \text{ and } E(x)!\]

Solve for coefficients of \(Q(x)\) and \(E(x)\).

Find \(P(x) = Q(x)/E(x)\).

Error Correction: Berlekamp-Welsh

Message: \(m_1, \ldots, m_m\).

Sender:

1. Form degree \(n - 1\) polynomial \(P(x)\) where \(P(i) = m_i,\)
2. Send \(P(1), \ldots, P(n + 2k)\).

Receiver:

1. Receive \(R(1), \ldots, R(n + 2k)\).
2. Solve \(n + 2k\) equations, \(Q(i) = E(i)R(i)\) to find \(Q(x) = E(x)P(x)\) and \(E(x)\).
3. Compute \(P(x) = Q(x)/E(x)\).
4. Compute \(P(1), \ldots, P(n)\).
Check your understanding.
You have error locator polynomial! Where oh where have my packets gone wrong? Factor? Sure. Check all values? Sure. Efficiency? Sure. Only \(n + 2k \) values. See where it is 0.

Last bit.
Fact: \(Q(x)E(x) = Q(x)E'(x) \) on \(n + 2k \) values of \(x \).
Proof: Construction implies that
\[
Q(i) = R(i)E(i) \\
Q'(i) = R(i)E'(i)
\]
for \(i \in \{1, \ldots, n+2k\} \).
If \(E(i) = 0 \), then \(Q(i) = 0 \). If \(E'(i) = 0 \), then \(Q'(i) = 0 \).

\[
\implies Q(i)E(i) = Q'(i)E'(i)
\]
holds when \(E(i) \) or \(E'(i) \) are zero. When \(E(i) \) and \(E'(i) \) are not zero,
\[
\frac{Q(i)}{E(i)} = \frac{Q'(i)}{E'(i)} = R(i).
\]
Cross multiplying gives equality in fact for these points. Points to polynomials, have to deal with zeros! Example: dealing with \(\frac{x-2}{x-2} \) at \(x = 2 \).

Hmmm...
Is there one and only one \(P(x) \) from Berlekamp-Welsh procedure?
Existence: there is a \(P(x) \) and \(E(x) \) that satisfy equations.

Unique solution for \(P(x) \)

Uniqueness: any solution \(Q(x) \) and \(E'(x) \) have
\[
\frac{Q(x)}{E'(x)} = \frac{P(x)}{E(x)}.
\]
(1)

Proof:

We claim
\[
Q'(x)E(x) = Q(x)E'(x) \text{ on } n + 2k \text{ values of } x.
\]
(2)
Equation 2 implies 1:

\(Q(x)E(x) \) and \(Q(x)E'(x) \) are degree \(n + 2k - 1 \) and agree on \(n + 2k \) points.
\(E(x) \) and \(E(x) \) have at most \(k \) zeros each.
Can cross divide at \(n \) points.

\[
\implies \frac{Q(i)}{E(i)} = \frac{Q'(i)}{E'(i)} \text{ equal on } n \text{ points.}
\]
Both degree \(\leq n \) \(\implies \) Same polynomial!

Yaay!!
Berlekamp-Welsh algorithm decodes correctly when \(k \) errors!

Summary. Error Correction.

Communicate \(n \) packets, with \(k \) erasures.

How many packets? \(n + k \)
How to encode? With polynomial, \(P(x) \).
Of degree? \(n - 1 \)
Recover? Reconstruct \(P(x) \) with any \(n \) points!

Communicate \(n \) packets, with \(k \) errors.

How many packets? \(n + 2k \)
Why? \(k \) changes to make diff. messages overlap
How to encode? With polynomial, \(P(x) \). Of degree? \(n - 1 \).
Recover? Reconstruct error polynomial, \(E(X) \), and \(P(x) \)!

Nonlinear equations.
Reconstruct \(E(x) \) and \(Q(x) = E(x)P(x) \). Linear Equations.
Polynomial division! \(P(x) = Q(x)/E(x) \)!
Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!
Summary: ideas.

Any $d + 1$ points correspond to one polynomial of degree $\leq d$.

Any $d + 1$ points give you back the polynomial.

- Can give out $n >> d + 1$ points, and any $d + 1$ gives full information.

Recover Information:
- Erasure tolerance $n + k$, can lose any k.
- Secret Sharing: n pieces, any k recovers.

Recover from Corruptions:
- Send more information: $n + 2k$
 - k errors, $n - k$ are correct
- and only one degree $n - 1$ polynomial consistent.
 (Use pigeonhole principle.)

Efficiency:
- Can fix k bad equations by multiplying by error polynomial of degree k.
- A polynomial times a polynomial is a polynomial!
- $n + 2k$ coefficients in all, $n + 2k$ correct equations.