Programming + Microprocessors = Superpower!
What are your super powerful programs/processors doing?
Logic and Proofs!
Induction = Recursion.
What can computers do?
Work with discrete objects.
Discrete Math \implies\ immense application.
Computers learn and interact with the world?
E.g. machine learning, data analysis, robotics, ...
Probability!
See note 1, for more discussion.

Babak Ayazifar
Call me “Babak”.
(First vowel pronounced like “o” in Bob. Second syllable as in “back”.)
Undergrad Caltech. Grad MIT.
Second time with CS70 Teaching! Welcome back!
Best contact: ayazifar@berkeley.edu
Does time in 517 Cory Hall. Make appointment before knocking.

Why I use Slides and some Advice.
Lots of arguments are demonstrated well by examples or verbal
explanations, but sometimes painful to write down, which works for
me with slides.
1) Is there value for you to watch me write on screen or paper?
2) You have them!
Use the slides to guide you.
Handout Version: for getting landscape.
Slide Version: for detailed understanding.
Some Issues: possibly fast, follow versus slides, lack of some context
versus blackboards.
It is easier to present more.
'More' is overview, connections, insights, some jokes (breaks), the
details.
Risk: Students get frustrated at not understanding everything.
It is ok: many levels to grok. Lecture is one pass.

Course Webpage: http://www.eecs70.org/
Explains policies, has office hours, homework, midterm dates, etc.
Two midterms, final,
midterm 1. Friday, February 22. 8-10 PM
midterm 2. Tuesday, April 2. 8-10 PM
Questions \implies\ piazza:
piazza.com/berkeley/spring2019/cs70
Weekly Post.
It’s weekly.
Read it!!!
Announcements, logistics, critical advice.

Satish Rao
20th year at Berkeley.
PhD: Long time ago, far far away.
Research: Theory (Algorithms)
Taught in CS: 70, 170, 174, 188, 270, 273, 294, 375, ...
Other: 1 College kid. One Cal Grad. And another College Grad.
Lecturing Style: I use slides for the last few years.

Wason’s experiment:1
Suppose we have four cards on a table:
▶ 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
▶ Card contains person’s destination on one side,
and mode of travel.
▶ Consider the theory:
“If a person travels to Chicago, he/she flies.”
▶ Suppose you see that Alice went to Baltimore, Bob drove,
Charlie went to Chicago, and Donna flew.
Alice
Baltimore
Bob
drove
Charles
Chicago
Donna
flew
▶ Which cards must you flip to test the theory?
Answer: Later.
CS70: Lecture 1. Outline.

Today: Note 1. Note 0 is background. Do read it.
The language of proofs!

1. Propositions.
2. Propositional Forms.
3. Implication.
4. Truth Tables
5. Quantifiers
6. More De Morgan's Laws

Propositions: Statements that are true or false.

- $\sqrt{2}$ is irrational
 - Proposition: True
- $2 + 2 = 4$
 - Proposition: True
- $2 + 2 = 3$
 - Proposition: False
- 826th digit of pi is 4
 - Not Proposition
- Johnny Depp is a good actor
 - Not Proposition
- Any even > 2 is sum of 2 primes
 - 4 + 5
 - Not a Proposition.
- $x = x$
 - Proposition.
- Alice travelled to Chicago
 - Proposition. False
- I love you.
 - Hmmm. Its complicated?

Again: "value" of a proposition is ... True or False

Propositional Forms.

Put them together.

<table>
<thead>
<tr>
<th>Propositions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1 - Person 1 rides the bus.</td>
</tr>
<tr>
<td>P_2 - Person 2 rides the bus.</td>
</tr>
</tbody>
</table>

But we can't have either of the following happen: That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 rides the bus or person 5 doesn't.

Propositional Form:

- $\neg (\neg (P_1 \vee P_2) \wedge (P_3 \vee P_4))$
- $\neg (P_2 \wedge (P_3 \vee \neg P_3))$

- Can person 3 ride the bus?
- Can person 3 and person 4 ride the bus together?

This seems complicated.
We can program!!

We need a way to keep track!

Propositional Forms: quick check!

- $P = \neg \sqrt{2}$ is rational
 - $Q =$ "826th digit of pi is 2"
 - P is False.
 - Q is True.

- $P \wedge Q$... False
- $P \vee Q$... True
- $\neg P$... True

Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \wedge Q$</th>
<th>$P \vee Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \wedge and \vee are commutative.

One use for truth tables: Logical Equivalence of propositional forms!
Example: $(P \wedge Q)$ logically equivalent to $\neg (P \vee \neg Q)$
... because both propositional forms have the same... Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>$\neg (P \vee Q)$</th>
<th>$\neg (P \wedge Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

DeMorgan's Law's for Negation: distribute and flip!

- $(P \wedge Q) = \neg P \vee \neg Q$
- $(P \vee Q) = \neg P \wedge \neg Q$
Quick Questions

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Is (T ∧ Q) = Q? Yes? No?
Yes! Look at rows in truth table for P = T.
What is (F ∧ Q)? T or False.
What is (T ∨ Q)? T
What is (F ∨ Q)? F

Distributive?

\(P ∧ (Q ∨ R) = (P ∧ Q) ∨ (P ∧ R) \)

Simplify: \((T ∧ Q) = Q, (F ∧ Q) = F \).

Cases:
- \(P \) is True .
 - LHS: \(T ∧ (Q ∨ R) = (Q ∨ R) \).
 - RHS: \((T ∧ Q) ∨ (T ∧ R) = (Q ∨ R) \).
- \(P \) is False .
 - LHS: \(F ∧ (Q ∨ R) = F \).
 - RHS: \((F ∧ Q) ∨ (F ∧ R) = (F ∨ F) = F \).

\(P ∨ (Q ∧ R) = (P ∨ Q) ∧ (P ∨ R) \)

Simplify: \(T ∨ Q = T, F ∨ Q = Q \).

Foil 1:
\((A ∨ B) ∧ (C ∨ D) = (A ∧ C) ∨ (A ∧ D) ∨ (B ∧ C) ∨ (B ∧ D)\)

Foil 2:
\((A ∨ B) ∨ (C ∧ D) = (A ∨ C) ∧ (A ∨ D) ∧ (B ∨ C) ∧ (B ∨ D)\)

Implication and English.

\(P \implies Q \)

- If \(P \), then \(Q \).
- \(Q \) if \(P \).
 - Just reversing the order.
- \(P \) only if \(Q \).
 - Remember if \(P \) is true then \(Q \) must be true.
 - this suggests that \(P \) can only be true if \(Q \) is true.
 - since if \(Q \) is false \(P \) must have been false.
- \(P \) is sufficient for \(Q \).
 - This means that proving \(P \) allows you to conclude that \(Q \) is true.
 - Example: Showing \(n > 4 \) is sufficient for showing \(n > 3 \).
- \(Q \) is necessary for \(P \).
 - For \(P \) to be true it is necessary that \(Q \) is true.
 - Or if \(Q \) is false then we know that \(P \) is false.
 - Example: It is necessary that \(n > 3 \) for \(n > 4 \).

Implication.

\(P \implies Q \) interpreted as
If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Examples:
Statement: If you stand in the rain, then you will get wet.
\(P \) = “you stand in the rain”
\(Q \) = “you will get wet”
Statement: “Stand in the rain” Can conclude: “you’ll get wet.”
Statement: If a right triangle has sidelengths \(a ≤ b ≤ c \), then \(a^2 + b^2 = c^2 \).
\(P \) = “a right triangle has sidelengths \(a ≤ b ≤ c \),
\(Q \) = “a^2 + b^2 = c^2”.

Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \implies Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

\(¬P ∨ Q \equiv P \implies Q \).
These two propositional forms are logically equivalent!
Variables.

- Propositions?
 - $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - $x > 2$
 - n is even and the sum of two primes
 - No. They have a free variable.
 - We call them predicates, e.g., $Q(x) = "x\text{ is even}"$
 - Same as boolean valued functions from 61A!
 - $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - $R(x) = "x > 2"$
 - $Q(n) = "n\text{ is even and the sum of two primes}"
 - Remember Wason's experiment!
 - $F(x) = "\text{Person } x\text{ flew.}"$
 - $C(x) = "\text{Person } x\text{ went to Chicago.}"
 - $C(x) \implies F(x)$. Theory from Wason's.
 - If person x goes to Chicago then person x flew.

- Logically equivalent: \iff (contrapositive)

- Logical equivalent: \iff (contrapositive).

- Definition: If $P \implies Q$ and $Q \implies P$ is P if and only if Q or $P \iff Q$.

(Not contrapositive) converse!

- Variables.

- Propositions?

Quantifiers: universes.

- Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

- Proposition has universe: "the natural numbers".

- Universe examples include...

Back to: Wason's experiment:1

- Theory: "If a person travels to Chicago, he/she flies."

- Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

- Which cards do you need to flip to test the theory?

- $P(x) = "\text{Person } x\text{ went to Chicago.}"$ $Q(x) = "\text{Person } x\text{ flew.}"$

- Statement/theory: $\forall x \in \{A,B,C,D\}, P(x) \implies Q(x)$

- $P(A) = \text{False}$. Do we care about $Q(A)$?

- No. $P(A) \implies Q(A)$, when $P(A)$ is False, $Q(A)$ can be anything.

- $Q(B) = \text{False}$. Do we care about $P(B)$?

- Yes. $P(B) \implies Q(B) = \neg Q(B) \implies \neg P(B)$.

- $P(C) = \text{True}$. Do we care about $Q(C)$?

- Yes. $P(C) \implies Q(C)$ means $Q(C)$ must be true.

- $Q(D) = \text{True}$. Do we care about $P(D)$?

- No. $P(D) \implies Q(D)$ holds whatever $P(D)$ is when $Q(D)$ is true.

- Only have to turn over cards for Bob and Charlie.

More for all quantifiers examples.

- "doubling a number always makes it larger"

- $\forall x \in \mathbb{N} \ (2x > x)$ False $\text{Consider } x = 0$

- Can fix statement...

- $\forall x \in \mathbb{N} \ (2x > x)$ True

- "Square of any natural number greater than 5 is greater than 25."

- $\forall x \in \mathbb{N} \ (x > 5 \implies x^2 > 25).$

- Idea alert: Restrict domain using implication.

- Later we may omit universe if clear from context.
Quantifiers...not commutative.

- In English: “there is a natural number that is the square of every natural number”.
 \((\exists y \in N)(\forall x \in N)(y = x^2)\) False

- In English: “the square of every natural number is a natural number.”
 \((\forall x \in N)(\exists y \in N)(y = x^2)\) True

Negation of exists.

Consider
\(\neg(\exists x \in S)(P(x))\),
English: means that there is no \(x \in S\) where \(P(x)\) is true.

Which Theorem?

- Theorem: \((\forall n \in N)\neg(\exists a,b,c \in N) (n \geq 3 \implies a^n + b^n = c^n)\)
 Fermat's Last Theorem!
 Remember Special Triangles: for \(n = 2\), we have 3,4,5 and 5,7,12 and ...
 1637: Proof doesn’t fit in the margins.
 1993: Wiles ...(based in part on Ribet's Theorem)
 DeMorgan Restatement:
 Theorem: \(\neg(\exists x \in N)(\forall a,b,c \in N) (n \geq 3 \implies a^n + b^n = c^n)\)

Summary.

- Propositions are statements that are true or false.
- Propositional forms use \(\land, \lor, \neg\).
- Propositional forms correspond to truth tables.
- Logical equivalence of forms means same truth tables.
- Implication: \(P \implies Q \iff \neg P \lor Q\).
- Contrapositive: \(\neg Q \implies \neg P\).
- Converse: \(Q \implies P\).
- Predicates: Statements with “free” variables.
- Quantifiers: \(\forall x P(x)\), \(\exists y Q(y)\).
- Now can state theorems! And disprove false ones!
- DeMorgan’s Laws: “Flip and Distribute negation”
 \(\neg(P \lor Q) \iff \neg P \land \neg Q\)
 \(\neg\forall x P(x) \iff \exists x \neg P(x)\).
- Next Time: proofs!