1 Continuous Joint Densities

The joint probability density function of two random variables X and Y is given by $f(x,y) = Cxy$ for $0 \leq x \leq 1, 0 \leq y \leq 2$, and 0 otherwise (for a constant C).

(a) Find the constant C that ensures that $f(x,y)$ is indeed a probability density function.

(b) Find $f_X(x)$, the marginal distribution of X.

(c) Find the conditional distribution of Y given $X = x$.

(d) Are X and Y independent?

2 Arrows

You and your friend are competing in an archery competition. You are a more skilled archer than he is, and the distances of your arrows to the center of the bullseye are i.i.d. Uniform $[0, 1]$ whereas his are i.i.d. Uniform $[0, 2]$. To even out the playing field, you both agree that you will shoot one arrow and he will shoot two. The arrow closest to the center of the bullseye wins the competition. What is the probability that you will win? Note: The distances from the center of the bullseye are uniform.
3 Uniform Distribution

You have two fidget spinners, each having a circumference of 10. You mark one point on each spinner as a needle and place each of them at the center of a circle with values in the range [0, 10) marked on the circumference. If you spin both (independently) and let X be the position of the first spinner’s mark and Y be the position of the second spinner’s mark, what is the probability that $X \geq 5$, given that $Y \geq X$?

4 Darts

Edward and Khalil are playing darts.

Edward’s throws are uniformly distributed over the entire dartboard, which has a radius of 10 inches. Khalil has good aim; the distance of his throws from the center of the dartboard follows an exponential distribution with parameter $1/2$.

Say that Edward and Khalil both throw one dart at the dartboard. Let X be the distance of Edward’s dart from the center, and Y be the distance of Khalil’s dart from the center of the dartboard. What is $P(X < Y)$, the probability that Edward’s throw is closer to the center of the board than Khalil’s? Leave your answer in terms of an unevaluated integral.

[Hint: X is not uniform over [0, 10]. Solve for the distribution of X by first computing the CDF of X, $P(X < x)$.]